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Abstract. A growing body of research illuminates the role that changes
in climate have had on violent conflict and social instability in the re-
cent past. Across a diversity of contexts, high temperatures and irreg-
ular rainfall have been causally linked to a range of conflict outcomes.
These findings can be paired with climate model output to generate
projections of the impact future climate change may have on conflicts
such as crime and civil war. However, there are large degrees of uncer-
tainty in such projections, arising from (i) the statistical uncertainty
involved in regression analysis, (ii) divergent climate model predictions,
and (iii) the unknown ability of human societies to adapt to future cli-
mate change. In this article, we review the empirical evidence of the
climate-conflict relationship, provide insight into the likely extent and
feasibility of adaptation to climate change as it pertains to human con-
flict, and discuss new methods that can be used to provide projections
that capture these three sources of uncertainty.

1 Introduction

Changes in climate have the potential to upset social stability. While the role of
climatological factors in historical and ongoing violent conflicts has been long de-
bated, a growing interdisciplinary literature demonstrates that the frequency and
intensity of conflicts ranging from violent criminal acts to large-scale civil wars are
often exacerbated by climate variation. Many pathways through which these effects
manifest have been proposed. Climate variation may restrict the supply of natural
resources, have psychological impacts on aggressive behavior, or directly increase
poverty, each of which in turn can incite conflict. In this article, we review evidence
of these impacts and discuss what our current knowledge implies for projections of
conflict under anthropogenic climate change. While a robust relationship between his-
torical climate disturbances and conflict outcomes has been established, there remain
important challenges to mobilizing these findings into precise expectations of the
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future. To improve predictions of future outcomes, research efforts should be focused
on identifying the mechanisms through which climate drives conflict, and the extent
to which societies could adapt to changing environmental conditions.

2 Historical evidence

A natural first step to projecting the effect of future climate change on conflict is
to examine the nature of this relationship in the past. A long history of study on
the association between climate and social instability across disciplines as diverse as
archaeology, geography, economics and political science provides a base of evidence
upon which such climate impacts may be estimated. Much of the earliest work was
qualitative in nature, focusing on relationships between environmental change and
civil conflict using case studies. In a review, [1] demonstrates that many of these case
studies identify a scarcity model in which climate leads to resource shortages, which
in turn incite conflict.
In recent years, modern econometric methods and increased data availability have

fueled a wave of quantitative evidence on this topic, complementing earlier qualitative
work. Empirical studies compare conflict data across space and time, seeking evidence
for or against the role of climate in triggering or prolonging conflict and crime. Initial
reviews of this literature found that the causal link between climate and conflict
was inconclusive, documenting contradictory results across contexts, methodological
approaches, and data sources [2–4]. However, more recent reviews have concluded that
a significant and robust relationship between climate variation and conflict exists
across a diversity of spatial and temporal scales [5–7]. As detailed in [5] and [8],
these differing views of the literature stem from the recent reviews’ exploitation of
increased data availability, inclusion of significantly more studies, adoption of clear
methodological standards, consideration of statistical uncertainty, and exclusion of
qualitative work.1

While acknowledging the distinct character that relationships between climate
and conflict have in diverse settings, in our review of the historical evidence we follow
[7] in seeking commonalities across quantitative and methodologically sound studies
that plausibly identify the causal effect that past climate variation has had on a range
of conflict outcomes. U.S.

2.1 The empirical challenge

Climatic variation does not alone cause conflict, but rather modifies the conditions
under which social interactions occur, thus potentially changing the frequency or
intensity of social unrest. The challenge facing quantitative assessments of the climate-
conflict link lies in separating the causal effect of climate from all other complex and
interacting drivers of conflict, such as economic hardship, social norms, and political
institutions. For example, Mexican homicide rates in 2012 were more than twice
those in the U.S., while average temperatures in the former nation also exceed those
in the latter [15]. However, attributing this differential to climate alone is clearly
problematic; among many other confounding factors, homicides in Mexico have been
dramatically affected by recent political efforts to combat the drug trade [16], an
influence likely not a consequence of temperature.
To isolate the role of climate in conflict, in an ideal experiment we would observe

two identical societies and “treat” one with a changing climate, such as increased

1 For details on the divergence between these literature reviews, see [5,6,8] and [9]. For
efforts to reconcile seemingly contradictory findings, see [10,11] and [12].
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temperature or higher frequency of drought. Leaving the second population as an un-
altered “control”, any difference in conflict outcomes across the two societies could be
justifiably attributed to climate change, as no other factors differ across populations.
Absent such an experiment, there are two common approaches to approximating this
scenario. First, cross-sectional studies compare conflict outcomes across locations,
assuming that populations are identical to one another once observable conflict co-
variates, such as economic and political indicators, are controlled for by including
these variables in a statistical regression. However, many potential drivers of conflict,
such as religion and culture, are both difficult to measure and correlated with cli-
mate. Because the full suite of conflict determinants are unknown and unmeasured,
it is likely impossible that any cross-sectional study can explicitly account for all im-
portant differences. Thus, the analyst risks conflating the role of climate with these
other unobserved factors.
Recent work generally follows an alternative approach. These studies rely on panel

data to exploit variation in climate across time within a population, allowing one
population to serve both as “control” (before a change in climate) and as “treatment”
(after a change in climate). As long as the time gap between treatment and control
is small enough, the assumption that all other correlates of conflict are independent
from climate variation can be plausibly supported, and the estimated effect of the
climate variable of interest can be seen as causal. The drawback of this approach,
however, is that only high-frequency climate variation can be used: the more gradual
the climate shift, the more implausible the claim that a human population at the start
and end of the change in climate are directly comparable along the many unobservable
dimensions that affect conflict.2 Thus, while future climate change is likely to occur
gradually over many decades, this approach relies on climate changes that are very
short-run in nature – a challenge described as the frequency-identification tradeoff
by [5].3

In this review, we replicate and expand results from the meta-analysis in [7], which
includes only studies that use this latter approach to identify a causal effect of climate
on various types of conflict. These studies estimate models of the generic form4

conflict variableit = β × climate variableit + μi + θt + εit (1)

where ε is an error term and β is the parameter of interest. In this model, β captures
the impact of climate variability on a conflict outcome within a location over time,
ensuring the same population is used as both treatment and control, as discussed
above. This is achieved by including a vector of location-specific constants, μi, which
are commonly known as location fixed effects. These control for all average differences
in conflict across locations due to time-invariant factors such as culture, history and
institutions. Additionally, the time fixed effects θt control for temporal shocks to con-
flict that affect all locations i simultaneously, such as macroeconomic shocks, common
policy changes or demographic shifts. Lagged effects of climate are relevant in cases

2 Some authors call high-frequency climate variation “weather”, referring to long-run av-
erage conditions as “climate”.
3 Note that the applicability of the impacts of short-run climate variation to questions of
long-run climate change depends upon the extent of adaptation future societies are likely to
invest in. As discussed in Sect. 3, evidence of adaptation in the crime and conflict literature
is limited – [17] and [18] both show that populations in hotter average climates do not appear
to have adapted at all with respect to crime. Moreover, gradual changes in climate have also
been shown to impact conflict outcomes, suggesting adaptation has been limited [19,20]. See
[21] for details.
4 Some studies use nonlinear functions of climate variables to capture differential impacts
across the support of temperature or precipitation (e.g. [22]).
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Fig. 1. Empirical studies indicating that climate variables have a large effect on the risk of
violence or social instability throughout a variety of modern contexts. These are examples
from studies of modern data that identify the causal effect of climatological variables on
human conflict. Relationships are shown with nonparametric watercolor regressions, where
the color intensity of 95% confidence intervals depicts the likelihood that the true regression
line passes through a given value (darker is more likely), and the white line denotes the
conditional mean. Results are from a replication of findings in [7].

where shocks have a delayed or persistent effect on conflict, and these can be addressed
by including climate shocks from previous time periods as independent variables (e.g.

[23,24]). To interpret β̂ causally, one must assume that the timing of climatic vari-
ations at a given location are independent of the timing of changes in potentially
confounding variables. Stated formally, we require E[εitclimate variableit|μi, θt] = 0,
i.e. all unexplained variation is orthogonal to climatic variation once all time-invariant
unobservables and population-wide temporal shocks are accounted for. Variations on
the model in Eq. (1) have become the standard in the newly growing empirical climate-
conflict literature, providing a large body of evidence on the causal effect of climate
on conflict across a diversity of settings.

2.2 What has been studied?

Recent empirical work has explored the impacts of many facets of climatic change on
a range of conflict outcomes across spatial and temporal scales. Using examples from
this literature, Fig. 1 demonstrates that in settings as divergent as ethnic riots in
India and violent retaliation in sports in the U.S., a robust and large effect of climate
variation on conflict outcomes has been identified. Perhaps the most dominant clima-
tological factor in this literature is temperature: from domestic violence in Australia
[25] to outbreak of civil conflict between armed groups in North and South Sudan [26],
higher temperatures have repeatedly been shown to inflate average levels of conflict.
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Precipitation can also be a critical driver, particularly in developing nations where
economic outcomes are closely tied to agriculture, such as India [27] and Brazil [22].
Other studies address distinct climate variables: [28] identify the positive impact of
droughts on civil conflict in Sub-Saharan Africa, [29] show that the El Niño Southern
Oscillation increases the probability of civil conflict throughout the tropics, while [30]
find no effect of storms or floods on the onset of armed conflict throughout the world.
We follow [7] and categorize the diversity of conflict types into two broad classes.

First, interpersonal conflict captures conflict between individuals, such as crime, rape,
robbery, and policy brutality. Studies in this category generally find that high tem-
peratures increase crime rates, with a particularly large and robust effect on violent
crimes. For example, [31] demonstrate that the probability of violent retaliation during
sporting events rises on hot days in the U.S., while [27] show that high temperatures
increase both property and violent crime in India. While there is not a consistent
effect of rainfall on interpersonal conflict, in some developing countries such as India
[27,32,33] and Tanzania [34], rainfall shocks that damage agricultural yields appear
to increase both violent and property crimes.
The second class of conflict is intergroup conflict, which encompasses interactions

between collections of individuals, such as wars, riots, and political violence. High
temperatures are found to exacerbate the risk of many types of collective violence,
from gang murders in Mexico [15] to country-level institutional change in sub-Saharan
Africa [35]. Effects are only detected, however, in low or middle income nations, where
average temperatures are higher and economic output is more closely tied to climate
via agricultural production. In these same countries, negative rainfall shocks have
been shown to increase intergroup conflicts such as Hindu-Muslim riots in India [36],
organized political conflict in sub-Saharan Africa [37] and coups across the world
[38]. In some cases, large positive rainfall shocks can also increase collective conflict
[22,39], suggesting a nonlinear response tied to the adverse impacts of both extremes
of the rainfall distribution on agricultural income.
While each study addresses a specific population with vulnerability to particu-

lar types of climate shocks, comparison of effects across studies may help illuminate
shared underlying processes linking climate and conflict throughout the literature.
However, to compare magnitudes of effects across such diverse settings, a standard-
ization of effect sizes is useful to account for the distinct climates and baseline conflict
prevalence in every study. For example, [17] and [27] measure the impact of temper-
ature on murder in the U.S. and India, respectively. [17] finds that one extra day
between 90◦F and 99◦F, relative to a day in the 60–69◦F range, causes 0.5% more
murders. [27] find that a positive temperature shock (defined as one standard devi-
ation above the mean) increases murders per 100,000 people by 3.7%. To compare
these two findings, the differential modeling of temperature, as well as the average
climate (much cooler in the U.S.) and baseline murder rates (much higher in
India), should be taken into account. This can be achieved by creating a standardized
coefficient that converts climate measures into standard deviations and normalizes the
conflict rate by the average risk of conflict in the observed sample:

βstandardized = βreported × σ(climate)

avg(Pr(conflict))
(2)

βstandardized is the change in the relative risk of conflict caused by a one standard
deviation change in the climate variable, where σ(climate) is the within-location
standard deviation of the climate variable of interest and avg(Pr(conflict) is the
baseline conflict risk [7]. This standardized coefficient allows for comparison of the
magnitude of climatic effects not just across study locations, but also across conflict
types and climate variables, facilitating unification of a broad and diverse literature.
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Fig. 2. Reanalysis of interpersonal conflict estimates. Colors indicate temperature (red) or
rainfall loss (blue). Point estimates are the cumulative effect from a two period distributed
lag model, with effect size distributions given for temperature and precipitation separately at
right. Solid blue and red horizontal lines give precision-weighted mean effects for precipitation
and temperature, respectively, and dotted lines the corresponding medians. The panels on
the right show the precision-weighted mean effect (circles) and the distribution of study
results (gray ticks); probability distributions are the posterior for the expected distribution
of an additional study (solid lines). Results are from a replication of findings in [7].

2.3 Synthesis of findings

Following [7], we bring together 56 studies that empirically estimate the relation-
ship between climate and conflict using panel models of the general form in Eq. (1).
[7] demonstrate that while there is a striking degree of commonality in effects
across these studies, there is also some evidence of publication bias, perhaps due
to author selection of specifications eliciting positive effects. Because this concern
largely arises through authors using different lag structures and nonlinearities for
climate effects, here we only present results in which we can use a single standard-
ized specification estimating both contemporaneous and lagged terms for all cli-
mate variables. When authors did not present results for such a specification, we
either obtained the original data and reanalyzed the results, or contacted authors
and received author-run reanalysis. In the left panels of Figs. 2 and 3, we show the
distribution of the standardized cumulative effects, calculated as in Eq. (2), for in-
terpersonal and intergroup conflict, respectively. Each point estimate and confidence
interval represents one study’s standardized cumulative effect of contemporaneous and
lagged climate variables, with blue indicating a rainfall estimate and red represent-
ing temperature. These figures suggest that, despite some heterogeneity, intergroup
conflicts respond robustly to both positive temperature and negative precipitation
shocks, while interpersonal conflict reveals a significant, yet smaller, temperature
effect.
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While the distribution of these standardized coefficients sheds light on the range
of estimates for climate’s impact on conflict across the literature, a further step is to
determine whether there is a generalizable pattern across these findings. Using a hier-
archical Bayesian approach to meta-analysis proposed in [40], we calculate the mean
effect across studies and capture the heterogeneity in the distribution of individual
study estimates. This approach explores whether “true” underlying effects likely differ
across studies, or instead whether observed differences in estimated effects are more
consistent with variation around an effect that is common across contexts.5

More precisely, we assume that the true standardized effect βj of each study j is
drawn from a population distribution of all possible studies:

βj ∼ N(μ, τ2) (3)

where μ is the common component across studies that describes the mean response
of conflict to climate, and τ represents the degree of true heterogeneity across study

contexts. As each estimate β̂j has its own standard error σ̂j , both the within-study

standard error and the between-study variance in β̂j ’s affect estimates of μ and τ . If τ
is close to zero, true conflict responses to climate are likely quite similar across diverse
populations and settings, and thus differences in coefficients across studies arise from
sampling error only. Conversely, a large τ indicates that true differences across study
estimates are large relative to sampling variability. Separately for interpersonal and
intergroup climate, each for rainfall and temperature, we use Bayes’ Rule to update
estimates of μ, τ and the βj ’s under a uniform prior. With 10,000 simulations, we
generate the posterior distributions of each variable, thus characterizing both the
commonality and heterogeneity in climate-conflict relationships across the existing
literature.
The posterior distributions from the meta-analysis methodology discussed above

are shown in the grey panels on the right of Figs. 2 and 3, run for all climate variables
pooled (left panel), temperature only (center panel) and rainfall only (right panel).
The circle with whiskers within each of these distributions is the estimated value of μ,
the common component across all studies. The two classes of conflict exhibit distinct
responses. Interpersonal conflict effects are relatively small in magnitude, but pre-
cisely estimated, while intergroup conflict estimates are wide-ranging in magnitude
and precision. Temperature effects are markedly larger than those for precipitation
in both conflict classes. Overall, however, there is a clear consistency across studies
demonstrating a robust impact of climate on conflict. For interpersonal conflict, the
meta-analysis means μ show that on average, a 1σ increase in temperature increases
conflict outcomes by 2.1%, around seven times larger than the 0.3%/σ effect of rain-
fall, although both effects are statistically significant. Higher temperatures have a
much larger effect on intergroup conflict, with an average 11.3%/σ impact and a
large dispersion in the posterior distribution of βj ’s. For each 1σ fall in precipitation,
intergroup conflict rises on average by 3.5%; again, a smaller but statistically signif-
icant result. While there are unambiguous differences in this relationship based on
the population and scale of analysis, the magnitude and statistical significance of the
common component in each category of impacts provides strong evidence of a shared
underlying process linking climate to conflict across many distinct settings.

2.4 Mechanisms

The empirical literature reviewed above estimates a “reduced form” effect of climate
on conflict – i.e. a cumulative effect across multiple potentially interacting pathways –

5 For a more detailed exposition of this methodology, see [7].
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but is often silent on the particular pathway(s) through which the effect takes place.
While many mechanisms have been suggested, few studies can isolate a single channel.
To fix ideas, suppose there are multiple mechanisms, indexed by i, through which a
climate variable affects a conflict outcome. Empirical estimates described in Sect. 2
generally identify the following cumulative effect across all pathways:

β =
d conflict variable

d climate variable
=
∑

i

∂ conflict variable

∂ pathwayi
· d pathwayi

d climate variable
· (4)

To accurately measure the causal effect of climate on conflict, understanding the
mechanism through which this occurs is not necessary. However, identifying these
pathways can be helpful for quantifying and forecasting the degree to which humans
may adapt over time. While the empirical estimates we have are accurate descriptions
of past responses, knowledge of how these effects may be tempered or exacerbated
through changes in each pathway can inform climate change policy for the future. To
meet this need, many studies attempt to uncover plausible pathways, and two central
mechanisms have been repeatedly supported.
First, there is a body of evidence suggesting a channel of shifting economic in-

centives. Under this theory, a temporary reduction in productivity due to a climate
shock lowers the opportunity cost of conflict, thus increasing outcomes such as crime
or civil unrest [41]. For example, [42] argue that negative rainfall events increase
the risk of civil conflict in Africa via temporarily low agricultural productivity, and
[43] hypothesize that drought in Somalia increases local violent conflicts via livestock
market effects. Climatic events similar in structure to those that increase conflict risk
(hot and dry, or very wet) have been repeatedly shown to also reduce productivity in
agriculture [22,29,44–47] as well as nonagricultural incomes [48–52], supporting the
possibility of an economic channel.
Further evidence demonstrates that the pattern in which climate affects income

is similar to that which drives conflict. For example, in Brazilian municipalities, [22]
shows that the nonlinear inverted-U shaped relationship between agricultural income
and rainfall almost exactly mirrors the U-shaped relationship between land invasions
and rainfall. Similarly, [29] match patterns of conflict and income responses to cli-
mate, showing that both correlate with the timing of ENSO only in the tropics and
not at higher latitudes. In other examples, studies match the timing of climatic events
that affect conflict with the timing of climatic events that are thought to be economi-
cally important [27,53,54]. In sum, these findings provide suggestive evidence that an
economic productivity channel is likely to be a meaningful pathway between climate
and conflict.
A second commonly discussed channel for temperature effects is psychological.

Neural structures react to ambient temperature changes in order to regulate inter-
nal body temperature [55]. In particular, levels of the neurotransmitter serotonin
have been shown to fall as temperature rises. Because serotonin is associated with
aggressive behavior, it is hypothesized that serotonin depletion can induce violent
acts under heat stress [56,57]. Other neurotransmitters, neuromodulators and hor-
mones, such as testosterone, norepinephrine and cholesterol may also tie temperature
to violent behavior, but are understudied [58,59].
Empirical support for this psychological channel is found primarily in studies

of interpersonal conflict that exploit climate shocks at time scales too short for an
economic pathway to be established. For example, [60] find that domestic violence
increases on hot days in the U.S., [61] and [17] report that assaults, rapes, and murders
increase during hot weeks and months (respectively) in the U.S., and [15] demonstrate
that homicide and suicide in Mexico both respond to higher temperatures with similar
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patterns that appear unrelated to economic conditions. In an experimental setting,
[62] show that Dutch police officers were more likely to use deadly force against
threatening opponents during training simulations in hotter weather. Although unable
to directly test the psychological mechanism, all of these studies point to the presence
of a short-run direct effect of climate on aggressive behavior that is plausibly related
to hypothesized roles of neurotransmitters in body temperature regulation.

3 Adaptation

These two mechanisms, which likely operate to different degrees in distinct contexts,
suggest varied means of adaptation. In cases where an income channel is plausible,
such as in developing countries where income is strongly tied to agriculture, sensitiv-
ities to temperature could decline over time if countries or regions experience rapid
income growth. Conversely, in cases where a psychological channel is more likely,
such as in the short-run response of interpersonal violence to temperature, adapta-
tion may take the form of acclimatization. That is, continuous exposure to higher
average temperatures may mitigate the neurological stress induced by a heat shock,
making populations in hotter climates less responsive (in terms of conflict outcomes)
than populations in temperate locations. In this section, we review existing evidence
of adaptation, with particular attention to the identification of income effects and
acclimatization.
Three basic approaches have been implemented to identify the extent to which

populations adapt to climate after repeated exposure. The first strategy, which is
fairly common in the literature, is to study whether estimates of coefficients of in-
terest in Eq. (1) vary over time. A second, newer approach studies how populations
have responded to longer and slower-moving changes in climate over time. Finally,
the third approach contrasts climate response functions across locations with different
average characteristics. This latter approach facilitates a distinction between income
and acclimatization channels, but is accompanied by the common challenges of con-
ducting causal inference with cross-sectional comparisons, as different responses may
be due to many unobservable characteristics that vary across space.

3.1 Long-run evolution of short-run sensitivity

A first approach for studying adaptation uses the same high-frequency climate events
used in Sect. 2 to study whether climate responses in a given population change over
time. For example, [17] estimates the impact of daily climate variation on monthly
crimes in U.S. counties separately for 5 different decades, starting in 1960 and ending
in 2009. Using these high-frequency data, the author generates a separate causal
impact of climate for each of these ten-year periods, and compares coefficients to test
for the presence of gradual adaptation that could lower the response severity over time.
Because there has been general warming over these 50 years throughout the U.S. [63],
a decline in response functions in later decades would suggest adaptation. Ranson
finds no evidence of this, as each of the five regressions generate nearly identical
results. Similarly, in their study of crime and climate in India, [27] estimate the impact
of climate variation separately for three decades over which significant urbanization,
economic growth and technological modernization took place in the country. They
find that the effect of rainfall shortages on crime is surprisingly stable across time,
but that temperature damages for both property and violent crime do fall significantly
from 9%/σ in the 1970s to 4.2%/σ in the 1990s, suggesting adaptation is occurring.
Given the divergent findings in these two contexts, more applications of this method
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to new settings could help determine the extent to which conflict responses can adapt
to future climate change.

3.2 Examining long-run sensitivity to gradual change

A second strategy enables identification of any type of adaptation that may have
occurred in response to somewhat longer-run historical changes in climate. This
approach examines how gradual trends in conflict and gradual trends in climate are
correlated over time in a given location, and compares this result to a coefficient
estimated from a typical higher-frequency panel data model as in Eq. (1). Evidence
of adaptation manifests as long-run responses that are less severe than those in the
short run: smaller impacts of low-frequency climate shifts suggest adaptation through
time. In one of the first uses of this “long difference” method in the climate impacts
literature, [64] demonstrate that the effects of climate on agricultural yields in the
U.S. over multiple decades are nearly identical to those derived from the short-run
model. They therefore conclude that there is little evidence of adaptation in American
agriculture.6

In the only direct application of this method to conflict outcomes, [7] use pixel-level
data on local conflict in East Africa between 1991 and 2009, a setting and dataset
first studied by [13]. For each pixel, the authors compute gradual trends in both
temperature and conflict by subtracting the 1991–1995 average values from 2005–
2009 average values. Local temperature trends range from pixels with no warming
at all to pixels with more than 2◦C warming, as shown in the left panel of Fig. 4.
They then regress, at the pixel level, this gradual change in conflict on the gradual
change in climate. The right panel of Fig. 4 compares the point estimate from this
long difference approach with the coefficient from a regression of the form in Eq. (1).
As was found in [64], the long-run coefficient is indistinguishable from the short-run
estimate, suggesting a lack of adaptation across the 20 year period studied. Extending
the difference period over which averages are taken to 1991–1999 and 2001–2009 only
increases the long-differences estimate, reinforcing the finding of no adaptation.

3.3 Identifying potential adaptation pathways

In the third methodology, the potential mediating role of economic and psychologi-
cal factors are explored more directly, for instance by comparing climate responses

across populations with different income levels. Specifically, estimates of β̂ from a
regression of the type shown in Eq. (1) are calculated separately for different spatial
units (e.g. a U.S. county) or temporal periods (e.g. a decade). These estimates are
then correlated with hypothesized drivers of adaptation, such as income and average
temperature, that also vary across spatial units. For example, evidence that violent
crime in wealthier counties in the U.S. is less sensitive to temperature than in poorer
counties would suggest that income might facilitate adaptation, in so far as crime
responds to temperature.

6 Similarly, [65] use this approach to claim that poor nations continue to suffer negative
economic damages from high temperature over long time periods of gradual warming.
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Nevertheless, there are many confounding factors in this approach that may bias
estimates of the causes of adaptation. For example, locations with higher average in-
come may have better police forces, more established rule of law, or may be cooler on
average, all factors that could be driving differential climate responses. Cross-sectional
regressions generate results that conflate all of these factors with income. This same
challenge arises for estimates of acclimatization: similar correlates of average climate
and conflict can bias the estimate of adaptation. However, this approach may be infor-
mative, albeit should be interpreted cautiously, and has been implemented in various
forms throughout the climate impacts literature. In what follows we explore explicitly
whether both acclimatization and differential impacts by income are apparent in the
data.

3.3.1 Acclimatization in cross-section

The underlying idea behind acclimatization is the possibility that if populations have
adapted to a particular climate (e.g. the hot and humid tropics), then they may
be less vulnerable to short-run climate variability (e.g. a hot summer with extreme
rainfall). If such adaptation has occurred in the past, populations inhabiting more
adverse climates, all else equal, should exhibit smaller conflict responses to climate
shocks than those in more temperate locations. In one example of this approach, [17]
tests whether hot days in hotter locations in the U.S. are less influential on crime
than hot days in cooler locations. The author divides the U.S. into four climate zones
based on long-term mean annual maximum daily temperature, and then estimates a
regression of the form in Eq. (1), separately for each zone. His results demonstrate
little to no acclimatization: high temperatures have a very similar effect on crime
across all climate zones. Similarly, [18] and [66] provide two time series analyses using
hourly violent crime data in Minneapolis, MN and Dallas, TX to identify a curvilinear
relationship between temperature and aggravated assaults. The authors find a similar
nonlinear response function in both the hot location of Dallas, TX as well as the cooler
Minneapolis, MN, and show that the relationship is moderated by the time of day
identically in both cities. While these findings cannot prove that populations do not
adapt to long-term climate conditions since the identifying variation is still high-
frequency under this methodology, they do suggest that long term exposure may not
always lead to more effective short-term adaptation.

3.3.2 Rising income

If adaptation costs are the main impediment to mitigating the impact of climate
on conflict outcomes, higher income regions should have lower marginal effects, as
agents are able to invest in adaptive measures. As discussed above, much of the liter-
ature proposes the presence of an economic channel through which climate variables
impact conflict, suggesting that income may be an important means of adaptation.
This stands somewhat in contrast to the broader climate impacts literature, which
provides mixed evidence that income ameliorates climate damages for a host of non-
conflict-related outcomes. For example, [67] find that the Philippines’ average typhoon
climate depresses incomes by 6.6%, and that this effect is the same for rich and poor
households; and [68] show that both rich and poor countries alike suffer nonlinear
economic productivity damages as temperatures rise.
Few studies in the conflict literature have directly studied the potential mediating

role of income. An exception is [53], who studies whether the rollout of a large govern-
mental workfare program (where civilians were guaranteed employment) ameliorates
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the role of temperature and precipitation on insurgency violence in India. He finds that
monsoon season rainfall significantly increases the risk of conflict and the intensity
of existing violence, but that the National Rural Employment Guarantee (NREGA)
scheme, a country-wide workfare program that generated 2.76 billion person-days of
employment in 2010–2011, completely removes the previously identified impact of
rainfall shocks on both the incidence and intensity of insurgency. Similarly, [15] uses
the rollout of the governmental cash transfer program Progresa in Mexico between
2002 and 2010 to identify the effect of monetary transfers on the temperature-conflict
relationship. The authors find evidence that these income transfers can mitigate the
effects of temperature on intergroup conflict to some degree, but not the effects on
interpersonal violence [15]. Extrapolated to other contexts, these results suggest ris-
ing incomes in the future could lessen conflict’s sensitivity to temperature, but the
magnitude of this across different settings remains unknown.
As a first step in providing broader evidence on whether higher incomes are asso-

ciated with lower sensitivities to temperature, we study whether results from the 56
studies discussed in Sect. 2 differ meaningfully by income. We use Penn World Tables
purchasing power parity adjusted income data to calculate the average income in the
mean year of the study period for the location studied in each analysis. In Fig. 5, we

plot the standardized effects of each study, β̂standardized in Eq. (2), against the log
of real average income, along with a linear regression line that is precision-weighted
to down-weight observations from studies in which the marginal effect of climate was
imprecisely estimated.7 As expected, the effect of temperature on conflict declines
as income rises, suggesting that income may effectively facilitate adaptation. For in-
tergroup conflict, the slope is −6.12, suggesting that for a 10% increase in income,
the marginal effect of temperature falls by 0.6%/σ. Given that the intergroup mean
effect of temperature is 11.3%/σ, this suggests a small adaptive effect of income in the
cross-section. However, interpersonal conflict reveals a temperature slope of −2.63;
the marginal effect in this case falls by 0.3%/σ from a mean of 2.1 for each 10%
gain in income, which is a slightly larger relative effect. In contrast, Fig. 5 shows no
evidence supporting the claim that income lowers precipitation sensitivities. In sum,
we find evidence that higher income levels may have an ameliorating effect on some
temperature-conflict relationships, but that this mediating effect is not apparent in
the large number of studies that examine precipitation responses.

3.4 Adaptation and projections

Understanding adaptation is crucial for extrapolating estimates of historical climate
responses to future time periods, with the accuracy of any projected future impacts
depending critically on whether future societies respond similarly to changes in cli-
mate as past societies. This in turn depends on the feasibility and costs of adapta-
tion: if available and cost-effective adaptive measures allow populations to alleviate
the negative impacts of new climatic conditions, estimated historical sensitivities may
overstate future impacts under climate change. While this argument is a common one,
it is also possible that future conflict outcomes could respond more severely to climate
change than the causal estimates reviewed in Sect. 2 would suggest. This could be

7 Because the number of studies limits the power of the regression, we include estimated
effects from all original author-preferred specifications in this analysis, rather than our own
reanalyzed effects. However, the reanalysis regression line is also shown in gray in Fig. 5,
and is not significantly different from the model using all author specifications.
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Fig. 5. New analysis using standardized effects from the studies reviewed in [7] paired with
Penn World Tables real income data from the mean year in each study sample. These figures
show the correlation between income and the marginal damage of climate on conflict, for
intergroup conflict (left panels) and interpersonal conflict (right panels), temperature (top
panels) and precipitation (bottom panels). The colored dashed lines are precision-weighted
linear regressions using authors’ preferred specifications, gray dashed lines are precision-
weighted linear regressions using estimated effects from our standardized reanalysis of the
original data.

the case if adaptation strategies employed in response to the high-frequency events
studied in the empirical literature are infeasible under a long-run gradual shift in cli-
mate. For example, suppose rainfall in a developing country is strongly tied to income
via agricultural output, and that income shocks can affect crime rates, as has been
argued (e.g. [27,32,42]). A farmer may be able to drill a new well during a drought
year to limit crop losses due to rainfall shortages, dampening the effect these losses
may potentially have on conflict outcomes. However, this strategy becomes obsolete
after repeated rain failure and well drilling exhaust available aquifers, rendering fu-
ture drought impacts more acute. Due to uncertainty regarding these types of effects,
both the degree of potential adaptation and its influence on the magnitude of future
relative to past impacts remain highly debated.

In this section we have described the muted evidence of adaptation to climate
within the conflict literature, with some studies identifying factors that appear to
ameliorate climate’s effect on conflict, and others finding little evidence that conflict’s
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response differs meaningfully over space or time. We discuss the projection of future
climate impacts in the following section, highlighting the importance of improving
our understanding of the likely extent and feasibility of adaptation.

4 Projections of conflict under climate change

As shown above, empirical evidence from recent history indicates a robust link be-
tween climate variability and a host of conflict outcomes. There have been a vari-
ety of attempts to extrapolate these findings forward to predict changes in conflict
under anthropogenic climate change, relative to a baseline of stable climatic condi-
tions. In essence, these extrapolations pair an estimate from one of the empirical
frameworks described in Sect. 2 with climate model-derived predicted changes in
temperature and rainfall over some future time period. This pairing then provides
a point estimate (and confidence interval) of changes in conflict caused by the al-
tered climate. For example, [17] uses his findings from a version of Eq. (1) to predict
that between 2010 and 2099, climate change will increase the number of murders in
the U.S. by 22,000 and the number of aggravated assaults by 1.2 million. Similarly,
[14] project an increase of 54% in armed conflict incidence in Africa by 2030, which
translates into 393,000 additional battle deaths. As rainfall variability and annual
mean temperatures are both predicted to rise under climate change in coming years
[63], these positive and potentially large impacts are plausible for a range of conflict
outcomes.
All approaches to projections based on historical findings face three key chal-

lenges. First, as discussed previously, causal estimates in this literature are derived
from high-frequency climate variation, while future climate change is likely to manifest
gradually. If slow-moving climate shifts allow societies time to adapt, future impacts
could be smaller than those observed in studies of short-run historical variability.
However, short-run effects could also be underestimates of longer-run climate impacts
if adaptive measures available under one-off events are not feasible when the entire
distribution of climate has shifted, as discussed above. Second, even if high-frequency
climate variability and long-run climate change have exhibited similar impacts on
conflict historically, climate change projections must assume that future societies will
respond as have those of the past. It is possible that forces such as economic develop-
ment, increased globalization, and changes in technology could fundamentally alter
vulnerability to climate in ways that cannot be captured using data from the recent
or distant past. While the fact that there remain strong impacts in the most devel-
oped and wealthiest nations in the world suggests that economic development alone is
unlikely to eliminate a climate-conflict relationship, there are no means of accounting
for unanticipated technological changes. In the absence of better alternatives, most
studies assume commonality in behavior between current and future generations with
respect to their climate response. Finally, climate change projections must account
for statistical uncertainty arising from sampling variability in the empirical estimates
and for model uncertainty arising from divergent projections provided by alternative
climate models. In this section, we focus on this final challenge and its possible solu-
tions, while also demonstrating the importance of incorporating adaptation directly
into projections of the future.

4.1 “Back-of-the-envelope” projections

A simple approach to projecting impacts, common in the broader climate literature,

is to multiply a causal estimate β̂ by predicted changes in the climate variable of
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interest. For concreteness, assume a study estimates the model in Eq. (1), where the

climate variable of interest is temperature. The coefficient of interest, β̂, estimates
the marginal change in the conflict rate given a 1◦C increase in temperature and has
a standard error σ̂β . Researchers then rely on climate model output to generate a
predicted change in temperature ΔT over some time interval, e.g. between 2000 and
2080. The projected change in conflict due to climate change in this linear model is

thus β̂ΔT .
Selection of ΔT from the large body of publicly available climate model output

is not trivial, as there are multiple dimensions of uncertainty and thus many possi-
ble estimates of climate change values. First, all climate projections are conditional
upon an emissions scenario, which depends in turn on assumptions about the future
evolution of population, economic growth, and policy. Given a choice of emissions
scenario, such as a “business-as-usual” trajectory (roughly represented by “Repre-
sentative Concentration Pathway” (RCP) 8.5 in the recent Intergovernmental Panel
on Climate (IPCC) Fifth Assessment Report (AR5)), there are then multiple cli-
mate models that provided projected changes in a range of climate variables. These
projections can diverge due to different representations of the physical processes in-
volved in climate change. In AR5 the IPCC gives a range of global mean surface
temperature projections for 2081–2100 relative to 1986–2005 of 2.6 ◦C to 4.8 ◦C un-
der RCP 8.5 based on an ensemble of over 30 climate models. Importantly, there
is no agreed-upon way to rank output from different climate models, with an equal
weighting across all models the existing benchmark approach in the climate literature.
Nevertheless, much of the social science literature makes climate change predictions
using very few of the available climate models, often simply selecting output from
one model alone. For example, [69] point out that the best-cited studies that estimate
the impact of climate on agricultural yields in the U.S. rely only on output from a
single climate model – the Hadley Centre model – likely due to its ease of use. In
contrast to this literature, conflict studies have begun to incorporate flexible ways of
accounting for the uncertainty that arises both in the regression equation via σ̂β and
via climate model selection, leading to more realistic predictions of future outcomes.
We review this approach and some examples of its implementation in the following
section.

4.2 Incorporating climate uncertainty

Statistical analyses are often careful to describe uncertainty in estimated parame-

ters that arises from sampling error; however, the climate impact projection β̂ΔT

necessarily merges statistical results (β̂) with climate model results (ΔT ), which are
themselves uncertain. To date, most studies account either for one or the other forms
of uncertainty, but not both, suggesting that published projections are likely less

precise than reported. The variance in a projection β̂ΔT is

var(β̂ΔT ) = E(ΔT )2var(β̂) + E(β̂)2var(ΔT ) + var(β̂)var(ΔT ) (5)

where we assume climate projections and impact parameter estimates are indepen-
dent. Most studies from the econometric literature only report the first term while
studies from the geophysical literature usually report the second term. Both ap-
proaches understate the true uncertainty in these projections.
In a recent paper, a team of climate and social scientists outlined a simple

analytical approach to incorporate both regression and climate model uncertainty
in projections based on empirical impacts estimates [69]. The authors apply this
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methodology to seven influential climate impacts papers to demonstrate that in many
cases the inclusion of both sources of uncertainty fundamentally alters projected
impacts.
The approach combines bootstrapping (to capture regression uncertainty) with

the employment of many climate models (to capture climate uncertainty). The first
step is to bootstrap the main specification of a given study, sampling a large number
of times (e.g. 1000 or more) with replacement. Then for each of 18 publicly available
and commonly used climate models, each bootstrapped estimate is extrapolated to
the future using the model’s estimated change in the climate variable of interest. For

example, let β̂ij be the estimated coefficient for a climate variable in study j and for
bootstrap replication i ∈ {1, ...1000}. In a linear regression like Eq. (1), for model
m ∈ {1, ..., 18}, the estimated future impact would be β̂ijΔTm. Thus, with 1000
bootstrap draws, there would be 18,000 projected impacts for each study j. Finally,
confidence intervals can be created by taking the 2.5th and 97.5th percentiles in the

distribution of β̂ijΔTm’s across all models to generate the range of values containing
95% of projected estimates. This method produces (weakly) wider confidence intervals
on projected future impacts because it captures two key sources of uncertainty rather
than just the one that is usually reported.
Increasingly, the approach established by [69] has been used in the conflict litera-

ture both for interpersonal and intergroup conflicts. In one of the earliest implemen-
tations of this method, [14] estimate the impact of current and lagged temperature on
the incidence of civil war in Africa using data on conflict events between 1981 and 2002
across the continent. With 10,000 bootstrap runs of their regression model and 18
climate models projecting climate under the A1B “business-as-usual” scenario,8 the
authors generate likely ranges of impacts due to changes in average climate between
1980–1999 and 2020–2030. Their results are reproduced in Fig. 6. The authors esti-
mate that in combination, temperature and precipitation changes by 2030 will cause
a 54% increase in civil war incidence. However, this point estimate has a 6.2–119.4%
confidence interval when both regression and model uncertainty are accounted for.
Similarly, [17] estimates the impact of climate change on rates of criminal activity in
the U.S. using county-level data for the years 1980 to 2009. With 1,000 bootstrap runs
and 15 climate models, he generates ranges for the estimated number of additional
crimes due to climate change (temperature and precipitation) between 2010 and 2099.
He finds that total crimes are predicted to increase by 3.7–12.5 million, with hetero-
geneity across crime types. Murders increase by 12,000–33,000, aggravated assaults
by 1.2–3.5 million, and robbery by 4,000–500,000. These ranges capture both varying
degrees of uncertainty in the empirical estimate of climate on a given crime type, as
well as the uncertainty in temperature and precipitation projections through the 21st
century.
[70] build on the approach in [69] by weighting each climate modelm using a prob-

ability weight wm, where weights are constructed so that the ensemble of weighted
models reconstructs a best estimate for the probability distribution of the global cli-
mate sensitivity. This is a potentially important adjustment because the distribution
of climate sensitivities in existing global climate models does not reflect the distribu-
tion that is estimated using other techniques (e.g. lower dimensional energy balance
models) that are more tightly constrained by data. In particular, the raw distribution
of temperature changes from climate models are “conservative” in the sense that the
tail of the distribution is underrepresented. To correct for this, higher weights are
assigned to climate models with global climate sensitivities in the tail of the distribu-
tion. The weight assigned to each model can be thought of as the probability that the

8 A1B was the IPCC’s Fourth Assessment Report’s precedent to RCP 8.5 in the most
recent report.



Health, Energy & Extreme Events in a Changing Climate 507

Fig. 6. Projected percentage point change in civil war for African regions and the continent
as a whole by 2030, from [14]. Results are a combination of 18 climate model projections
running the A1B scenario, and 10,000 bootstrap estimates of the historical relationship
between climate and civil war in Africa. For each region, boxplot 1 represents projections
including uncertainty in both climate model projections and in conflict response to climate,
boxplot 2 represents uncertainty only in conflict response to climate, and boxplot 3 represents
uncertainty only in climate projections. Dark vertical lines represent median projection,
colored boxes the interquartile range, and whiskers the 5th–95th percentile of projections.

model represents what will actually occur in the future (the original approach in [69]
assumes each model is equally likely) and thus the corrected probabilistic distribution

of projections is the distribution of β̂ijΔTm weighted by wm. This approach brings
the distribution of projected conflict outcomes into alignment with the distribution
of global climate sensitivities estimated by climate modelers.

4.3 Considering adaptation

These methods of projection have not yet been combined with estimates of expected
adaptation. That is, while Sect. 3 discussed the potential ameliorating effect of in-
come on the climate-conflict relationship, studies projecting future impacts do not
account for the mitigating influence of income growth over time. To quantitatively
explore the magnitude of this adaptive mechanism, we use results shown in Fig. 5 and
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a simple back-of-the-envelope climate projection to provide suggestive evidence of the
adaptive potential of economic growth for future conflict outcomes. Recall that for
intergroup and interpersonal conflicts, respectively, we estimate that a 10% increase
in average income lowers the marginal effect of temperature on conflict by 0.6%/σ
and 0.3%/σ, using empirical studies reviewed in [7]. If we make the admittedly strong
assumption that this association is causal, how might this result translate into future
projected impacts? As the climate warms in coming decades, it may amplify base-
line conflict rates, but as incomes rise over these same years, these effects may be
attenuated. A projection that accounts for such adaptation must compare the mag-
nitude of the direct climate effect (14.78%/σ on average across the intergroup studies
with authors’ original specifications, and 2.81%/σ for interpersonal studies) with the
adaptive impact of rising incomes.
We conduct this simple exercise and discuss our results for two example countries.

First, consider Tanzania, a country with expected warming of 3σ by 2050, as calcu-
lated using an ensemble mean for 21 climate models running a “business-as-usual”
emissions scenario [6]. Ignoring the adaptive effect of income, a simple projection of
conflict impacts due to climate change by 2050 is a 3σ×14.78%/σ = 44.3% increase in
the relative risk of intergroup conflict and a 3σ×2.81%/σ = 8.43% increase for inter-
personal conflict. However, Tanzania’s economy has been growing at an annual rate
of 5.1% on average since 1989, the first year for which the World Bank provides data.
If we assume this trend were to continue to 2050, national income will have grown
by a factor of 4. Combining the impact of climate change with our estimated income
adaptation effect and this income growth, the increase in relative risk is reduced to
11.4%/σ for intergroup and to zero for interpersonal conflict, clearly an important
adjustment. Now consider a slower growing country, The Netherlands, where annual
economic growth has averaged 2.1% since 1989 and projected warming is 2σ. Direct
climate change damages induce a 29.6% increase in the relative risk of intergroup
conflict and a 5.6% increase in interpersonal conflict by 2050. These impacts fall to

20.1% and 1.8% when we extrapolate historical income growth and adjust β̂ using
this approach.
These figures are a cursory estimate using a simple projection approach for cli-

mate and a basic cross-sectional linear regression to capture adaptation. They should
thus not be interpreted literally, especially because the cross-sectional association

between β̂ and income in Fig. 5 might not be a causal relationship. Nonetheless,
this thought experiment is useful because it illustrates the potentially important
effect that adaptation might have on projections of conflict risk imposed by cli-
mate change. Future work should focus on identifying a causal effect of income
growth on β so that these adjustments to projections can be applied with greater
confidence.

5 Conclusion

Findings from quantitative research in economics, political science and other social
science disciplines employing modern econometric techniques and data from recent
history indicate a robust link between climatological factors and a range of conflict
outcomes in diverse settings throughout the world. While there are important differ-
ences in this relationship based on the population and scale of analysis, meta-analysis
results indicate strong evidence of a shared underlying process tying climate to conflict
across many distinct contexts.
Existing empirical evidence of climate’s impact on conflict can be paired with

climate model output to generate projections of the impact future climate change
may have on conflicts ranging from violent crime to civil war. However, there are large
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degrees of uncertainty in such projections, arising from (i) the statistical uncertainty
involved in regression analysis, (ii) divergent climate model predictions, and (iii) the
unknown ability of human societies to adapt to future climate change. New methods
can be used to provide projections that capture the first two sources of uncertainty;
while these approaches generate more accurate assessments of the state of scientific
knowledge, they tend to generate large confidence intervals for most conflict outcomes.
Policy design should account for this higher level of uncertainty.
Addressing (iii) is a current major challenge in the literature, and a promising area

for future research. All projections of future impacts based on empirical estimates from
historical datasets rely on an important set of assumptions regarding the similarities
between past, current and future societies. These assumptions manifest in the extent
to which future populations can and will adapt, thus mitigating climate damages that
we have observed in the past and present. Theoretically, human populations may be
able to use adaptive strategies to break the pathways linking climate variability and
conflict. However, evidence of adaptation is weak within the conflict literature and
few studies have directly addressed the issue. Among existing analyses, there appears
to be no amelioration of the sensitivities over time, although there is some evidence
of reduced sensitivities for populations with higher incomes – but it is not known
if this association is causal. Similarly there is little evidence for acclimatization, as
locations with more adverse average climates do not exhibit less vulnerability to short-
run climate shocks. More research in this area is clearly needed, yet as the literature
currently stands, limited evidence of adaptation suggests that the significant impact
of past climate variability on both interpersonal and intergroup conflict is likely to
persist in the future, with climate change over the 21st century amplifying existing
patterns of conflict.
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