
Exploration of Attention and Transformers for

Question and Answering

Stanford CS224N Default Project

Sing Kwan Ng
Department of Computer Science

Stanford University
singkwan@stanford.edu

Mentor: Chris Waites

Abstract

The project was intended to be an exploration of convBERT model without pre-
training, but after training a base BERT model (encoder only Transformer) and
achieving very low performance, the objective shifted towards trying to under-
standing transformers and attention for Question Answering. Experiments on both
hyperparameters and network architecture was done on the BERT model, with
conclusion that this model will either overfit, or not converge. A hypothesis is
suggested that without large corpus pretraining, simple self attention on a concate-
nated context and question has big difficiencies vs explicit cross attention to learn
SQuAD. QAnet model was also trained for purposes of comparisons and analysis.

1 Introduction

The original project was intended to be implementation of the novel transformer based architecture
with modified attention mechanism (convBERT[1]). The plan was to explore the performance and

provide some analytical performance. However, due to issues with achieving performance on BERT
model, the project has pivoted towards understanding the complexities of achieving performance in
the BERT model, with analysis vs other proven attention based models.

2 Related Work

Various transformer based models have been used and have performed very well on Question and
Answering benchmarks like SQUAD, while achieving better efficiency than RNN models (higher
performance given same training time). Without pretraining, these include RNet, QAnet and Trans-
formerXL, with QAnet achieving 82.2 EM score. With pretraining (on very large corpus on unsuper-
vised task, and finetuned on question answering task) another level was achieved, with pretrained
transformer models achieving even higher performance on SQUAD 2.0. For example ALBERT single
model achieved 88.7 EM, spanBERT achieving 85.7 EM on SQuAD 2.0.

3 Approach

3.1 BiDAF model

First was to setup the environment and to test the baseline performance, and to gain insights on
the training process. This model is an RNN based model, with attention Running the training and
evaluation provided expected results.

Stanford CS224N Natural Language Processing with Deep Learning

3.2 BERT model

The BERT[2] model is an encoder only transformer model. One challenge was that BERT has always
been used in a pre-trained on large corpus followed by fine tuning on specific use case, e.g. Questions
and Answering. In this case, the approach is to design the network as it would have been for the
Question and Answering fine tuning, but utilizing pre-trained word embeddings only.

Input Layer: Based on the BERT paper, the input uses a different structure (as seen in the diagram)
than the baseline BiDAF. The preprocessing was modified to include [CLS] and [SEP] tokens, and

appending context and question in a single input. Glove300 pretrained word embeddings were used.
Position embeddings, is a numerical count of the position in the input. Segment embeddings is
labelling the context and question as different segments (1 and 0) All the embeddings are summed up
to become the input layer, with size (Batch size, Max sequence length, Embedding size)

Tranformer Layers: Each transfomer block is a multiheaded self attention as implemented in the
original Attention is all you need paper[3]. This is connected to a stacked fully connected layer, with
the output size set to match input size. This transformer block itself is also then stacked.

Output layers: For the fully connected output layer, 2 output architecture’s were tested. The first one
was referenced from huggingface’s implementation of BERT, where the outputs of all final hidden
layers of the transformer is connected to a fully connected layer, then to 2 final nodes, representing
the start and end token. This is then split at the end. Another approach was to have 2 completely
different fully connected layers after the transformer layers, that would end with a single node each
predicting start and end tokens. This resembles that for QAnet output layers.

Start Start

¥ —v

Start | End

A
Start Start Softmax

A 4 A
Softmax Softmax Linear

A A
Linear Linear Linear

|
[)

| 2x Linear | 2 x Linear | 2x Linear

Attention Attention Attention

| 2x Linear 2x Linear | 2 x Linear

Attention Attention Attention

x ——_* TA

| 2x Linear | 2x Linear | 2x Linear

Attention Attention Attention

A

Input (aa] (Til oa ml fae) ‘tsen | he {tikes | rey] (Fring | (tsent |

+ * + + + * + + + > +

+ + + + + + * + > * +

emmosinos [Eo][E: JL € J[es |e Jes Lee |Le |[ee] [es | Le. |

Figure 1: BERT like transformer architecture with 2 different output configurations

However, as described in the experiment section, the model’s performance and ability to learn proved
to be less than performant, with various variations tested. This lead to the exploration of QAnet as a
way to compare and analyze the performance seen for this model.

3.3. QAnet model

This time, an existing code[4] for QAnet model was taken and adapted to current work flow due to
time limitations. Permission was requested in Ed!. Data inputs was similar to baseline BiDAF model,
where questions and context are fed in separately.

Input layer: Both word and Character embeddings are used. In this case, we are using Glove300
word and Character embeddings. The character embedding is fed through a convolution layer, to
reduce dimension and extract key attributes. Both are concatenation [wordemb; charemb], and
finally padding is finally added to ensure consistent size of input into the network.

Embedding and Model Encoder blocks: It is a combination of [convolution-layer x No. of layers
+ self-attention-layer + feed-forward-layer]. The self attention here is the same multi-headed self
attention as in previous BERT Model. Utilizes depthwise separable convolutions. The only difference
between the embedding and model encoder block is the convolution layer number.

Context-query attention layer: The cross attention is calculated and then concatenated to the context
and query hidden layers.

Output layer: The start and end outputs have their own heads. The start token is a linear layer applied
on the concatenation of first 2 stacked encoder blocks. The end token is the same but applied on the
1st and last stacked encoder blocks.

Model One Encoder
Block

‘Stacked Model
Encoder Blocks:

Stacked Model
Encoder Blocks.

Stacked Model
Encoder Blocks

 Self-attention

A

———> G) Repeat

Stacked Embedding Stacked Embedding
Encoder Blocks Encoder Blocks

\ (Position Encoding)]

Context Question

Figure 2: QAnet architecture

4 Experiments

4.1 Data

The dataset used was the provided SQuAD 2.0 data, with training set size of 129,900, and a dev

sample size of 5891. This includes questions and context with samples that do not have answers.

"https://edstem.org/us/courses/3098/discussion/323474 ; It was made clear that I would explicitly call it out,

and credit would be deducted for not implementing it without starter code

4.2 Evaluation method

The evaluation metrics used are the negative log likelihood losses (NLL), the EM and F1 scores (as

described in earlier lectures).

4.3 Experimental details

For the BERT model, a lot of problems arose in achieving consistently declining training losses. Even
then, the training loss decreased very slowly, without any apparent improvements on the dev set.

Setting Value

Output network Dual heads for START END
Transformer layers 8
Dim Transformer FC layer | 300
No. of attention heads 12
Batch size 16
Learning Rate le-4 (Adam)

Table 1: Bert best settings

For the QAnet model, training stability was not an issue. Majority of settings are kept to the same
settings used in the original paper.

Setting Value

Dimensions 128
Embedding conv layers | 4
Model encoding blocks | 7

Model conv layers 2
Attention heads 8

Batch size 16

learning Rate le-3 (Adam)

Table 2: QAnet settings

4.4 Results

Early on, the main struggle was finding a combination of network architecture and hyper parameters
to allow the model training loss to drop and converge. As different network infrastructure pieces
and hyperparameters were tuned, the majority of combinations lead to no convergence. Finally,
after removing 12 regularization and with specific combination of network architecture settings, the
model converges, even achieving similar NLL loss in training as other models. However, the dev
performance shows that the model is probably just overfitting, but adding back 12 regularization, the
model training loss fails to converge again. The range of variations attempted is in table 3, but most
of the time would fluctuate between not converging, or having slow reduction in training loss but not
performing on dev set, as seen in figure 3

Experiments Variations

Output Network Single | Dual head
Freezing embeddings 1/0
Transformer FC layer dim | 300, 450

Batch size 16, 32

Learning rate (Adam) le-2, le-3, le-4

12 regularization 0, 0.01, 3e-7

Table 3: Experiments variations ran

The performance of the "best" BERT model did not perform well, achieving close to BiDAF and
QAnet training loss, but not working on the dev set. The baseline BiDAR model and QAnet model

NLL
tag: train/NLL

200k 400k 600k 800k

Figure 3: Light blue line at bottom is model that converges, the rest are various attempts with different
configurations

however, achieved convergence quickly. Overall, comparing the 3 models in table 4, the worst model
is the BERT model (without pretraining), that seems to overfit the data, but not learn effectively to
perform on the dev set. The QAnet model beats the baseline BiDAF model but a pretty substantial
margin, also converging faster.

Model Test EM | Test Fl | Eval EM | Eval Fl

QAnet 61.3 64.6 64.2 57.4
BERT (no pretrain) - - 35.9 39.1
BiDAF (baseline) - - 56.5 59.8

Table 4: Overall model comparison

' BERT not submitted for test set evaluation as it does not even

perform on dev set. BiDAF is the baseline model provided.

NLL
tag: train/NLL.

2M

Figure 4: Models training loss comparisons; Pink: BERT, Orange: BiDAF, QAnet: Gray

AVNA EM Fl NLL
tag: dev/AVNA tag: dev/EM tag: dev/F1 tag: dev/NLL

= . so0k 1M 15M 2M 25M aM SSM

Figure 5: Models evaluation set comparisons; Pink: BERT, Orange: BiDAF, QAnet: Gray

tl
 IN tl Il
 8

5 Analysis

For the BERT model, it seems that it is unable to actually learn on the question and answering
dataset, even with pretrained embeddings. The obvious hypothesis is that the architecture transformer
encoder with self attention only isn’t able to learn without pretraining, even if using pretrained
word embeddings. The 2 pretraining task for BERT, are masked span prediction, and next sentence
prediction, which allows it to retain large amount of information. The initial expectations was that
even without pretraining, it would be able to achieve some performance. But based on the TS paper[5],
the degredation for using these networks without pretraining is high. This ranges from around 20
% for GLUE and super GLUE, but SQuAD was the task that showed the highest degredation in
performance for lack of pretraining, as eeen in table 5

 Benchmark Metric With pre-train | Without pre-train | percent diff.

GLUE Avg. Scores 83.3 66.2 -20.4
Super GLUE | Avg. Scores 71.4 53.0 -25.7
SQuAD EM 80.88 50.31 -37.8

Table 5: T5 pretraining vs no pretraining benchmark comparison

Another thing that could have improved the model is increasing parameter size. The network size
tested here is substantially smaller than that of actual BERT, with the the biggest difference in the
transformer feedforward linear layer dimension (3072 on BERT vs 300 here) and hidden dimensions

for the attention layer is also smaller, at 768 on BERT vs 300 here. Increasing parameters was
tested, with feedforward linear dimension increased from 300 to 450, but model performance did not
improve. There is a chance that increasing it further (which was not done due to GPU size restrictions)
would improve its ability to learn, but would likely have a very low upper bound.

The hypothesis of why BiDAF and QAnet works without pretraining, and able to achieve strong
performance on SQuAD 2.0 is on the difference in usage of the attention mechanism. BiDAF uses
a bidirectional attention mechanism, concatenating context to question, and question to context
attention (together with context hidden states). QAnet uses self attention in the input encoder but

separating question and context inputs in its own input layers. After that, an explicit cross attention
between context and question is used. BERT utilizes self attention on a concatenated input of both
question and answer, with a segment embedding added to the input to help identify the context and
query. However, this mixes effectively self attention of context to itself (and question to itself) and
cross attention (between context and question).

Last observation is that the data imbalance of no answers could be one of the reasons the BERT
model struggled to converge. With about 50 % of the data being no answer, the model would at many
times get stuck at predicting no answer for all, which would still provide a baseline performance, like
a local minima that the model gets stuck at.

6 Conclusion

The BERT model will either overfit, or not converge if trained on SQUAD data without pretraining
on large corpus. This is some what aligned with the findings in T5. A hypothesis is suggested that
without large corpus pretraining, simple self attention on a concatenated context and question has
big difficiencies vs explicit cross attention to learn SQUAD. QAnet and BiDAF explicit question and
query cross attention mechanisms allow it to learn SQUAD effectively.

References

[1] Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, and Shuicheng Yan.
Convbert: Improving bert with span-based dynamic convolution, 2021.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[4] Bang Liu. qanet-github. https://github.com/BangLiu/QANet-PyTorch, 2017. [Online;
accessed 12-March-2021].

[5] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer, 2020.

