
BiDAF with Self-Attention for SQUAD 2.0 

Stanford CS224N Default Project - ID SQuAD Track 

Michelle Huang 
Department of Computer Science 

Stanford University 
huangmjy@stanford.edu 

Abstract 

The primary goal of this work is to build a QA system that improves upon a baseline 
modified BiDAF model’s performance on the SQuAD 2.0 dataset. To achieve this 
improvement, two approaches are explored. In the first one, the modified BiDAF 
model’s embedding layer is extended with character-level embeddings. In the 
second approach, a self-attention layer is added on top of the existing BiDAF 
attention layer. The performance of these two approaches is evaluated separately 
and also when combined together into a single model. The model with character 
embeddings yielded the best performance on the test set, achieving an EM score 
of 56.872 and a F1 score of 60.652. The self-attention model performed below 
expectations overall, though it was the best model when it came to performance on 
unanswerable questions. 

1 Introduction 

Question answering (QA) is a widely researched topic in the field of natural language processing. 
The primary goal of QA systems is to answer a question correctly given a question and an asso- 
ciated context paragraph. This task provides us with a quantitative measure of how well machine 
learning models can "comprehend" text. QA systems have many commercial applications, with a 
key application being incorporation into popular search engines such as Google to better serve the 
information need of humans. These systems allow search engines to directly provide answers to 
more basic questions, alleviating the need for humans to spend time reading through search results to 
obtain an answer. 

This paper focuses on building a QA system for the Stanford Question Answering Dataset (SQUAD), 
which was first introduced as part of Rajpurkar et al. [2016] [1]. SQuAD is a structured dataset 

that contains many (question, context paragraph, answer) triples derived from Wikipedia articles. 
A more recent iteration of the SQuAD dataset, SQUAD 2.0, introduced adversarial unanswerable 

questions, where the provided context paragraph does not contain an answer to the question [2]. 
Rapid progress has been made on the SQuAD challenge since release, with current state-of-the-art 
models exceeding human performance. Most of the high-performing QA systems leverage pre-trained 
contextual embeddings [3][4] to achieve their performance, but this project was intentionally limited 
to using non-contextual GloVe word embeddings. It is important to note that while the state-of-the-art 
models have exceeded human performance on the SQuAD dataset, the problem of question answering 
is far from solved because real world data is not structured nicely like SQUAD. 

This project aims to improve upon a pre-established baseline QA model by first incorporating 
character-level embeddings and then adding in a self-attention layer similar to what is described in 
Wang et al. [2017] [5]. I found that the addition of character-level embeddings improved performance 
slightly at the cost of a significant increase in training time, while the addition of a self-attention 
layer to the existing BiDAF model performed worse than the baseline. Combining character-level 
embeddings with a self-attention layer led to improved performance on the dev set, but this variant 
performed worse on the test set, possibly due to overfitting and the added complexity. 
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2 Related Work 

Numerous architectures have been developed over the years to tackle the question answering problem 
posed by the SQuAD dataset. In this section, I provide a brief overview of the two models that 
inspired this work. Please note that the terms "question" and "query" will be used interchangeably 
throughout this paper. 
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Figure 1: Full BiDAF Model Architecture 

Back in 2016, before the rise of models using pre-trained contextual embeddings, the Bidirectional 
Attention Flow (BiDAF) model introduced one of the more significant advances in QA model 

architecture [6]. BiDAF utilized a bi-directional long short-term memory RNN (LSTM) with a 

bi-directional attention flow network to predict the starting and ending positions of the answer in the 
context paragraph. Here, "bi-directional" means there is both context-to-query and query-to-context 
attention. This BiDAF model is used as the baseline for this project, though the baseline model differs 
slightly in that it only contains word embeddings in its embedding layer while the original model’s 
embedding layer contained both word and character-level embeddings. 

R-Net, a later model introduced in 2017 [5], builds on the BiDAF architecture by combining BiDAF’s 
context-to-query attention layer with a self-attention layer. R-Net performed better than BiDAF on the 
SQuAD 1.1 test dataset, achieving an EM score of 71.3 and F1 score of 79.7 compared to BiDAF’s 
EM score of 68.0 and FI score of 77.3 respectively. Similar to R-Net, this project attempts to improve 
upon a modified BiDAF model’s performance on the newer SQuAD 2.0 dataset by incorporating 
self-attention into the model architecture. 

3 Approach 

I extended the baseline model with character-level embeddings and a self-attention layer. 

3.1 Baseline 

The baseline model used for this project is a BiDAF model without character-level embeddings 
provided by the CS224N course staff. More details can be found in the project handout. 

3.2 Character Level Embeddings 

Let wj,...,we € N be input word indices, and let c,,...,c, € N be the input character indices 
corresponding to the word indices. The embedding layer of the baseline model performs an embedding



lookup to convert the word indices into word embeddings v,...,vz € R? for both the context 
paragraph and the query, producing embeddings c,...,cn € R? for the context and embeddings 
M1,---.¢m € R? for the query. To augment the baseline embedding layer, I added character-level 
embeddings for both the context paragraph and query. First, I performed the embedding lookup 
to convert the character indices into character embeddings, then I applied dropout and passed the 
output through a 2D convolutional layer to learn the embeddings. I decided to use a 2D CNN in my 
implementation because the character-level embedding returns a 4D tensor. After the CNN step, I 
applied max pooling to the character-level embeddings before concatenating them to the projected 
word embeddings. 

3.3 Self-Attention Layer 
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Figure 2: BiDAF Modified with Self-Attention Layer 

For the self-attention layer, I used multi-headed attention with 8 attention heads, with each head using 

scaled dot-product attention, as described in Vaswani et al. [2017] [7]. I included this layer after the 
BiDAF attention layer. 

4 Experiments 

4.1 Data 

Question: What did the Edict do for Huguenots in France? 
Context: The pattern of warfare, followed by brief periods of peace, continued for nearly another quarter- 

century. The warfare was definitively quelled in 1598, when Henry of Navarre, having succeeded to the French 
throne as Henry IV, and having recanted Protestantism in favour of Roman Catholicism, issued the Edict of 

Nantes. The Edict reaffirmed Catholicism as the state religion of France, but granted the Protestants equality 
with Catholics under the throne and a degree of religious and political freedom within their domains. The Edict 
simultaneously protected Catholic interests by discouraging the founding of new Protestant churches in 

Catholic-controlled regions.[citation needed] 
Answer: granted the Protestants equality with Catholics 

Figure 3: Example of a SQuAD (question, context paragraph, answer) triple



This project uses a portion of the SQUAD 2.0 question answering dataset [2], which contains 
approximately 141,000 (question, context paragraph, answer) triples derived from Wikipedia articles, 
with answers crowdsourced from Amazon Mechanical Turk. The data is split into training, dev, and 
test sets with about 130,000, 6,000 and 6,000 examples respectively. 

Other data provided by the course staff include pretrained GloVe word embeddings and pretrained 
character-level embeddings. 

4.2 Evaluation method 

I will be using the official SQUAD evaluation metrics, which are Exact Match (EM) and F1 score. 

These two metrics are briefly described below. 

e EM: a strict binary metric measuring whether the system output matches at least one of the 
ground truth answers provided word-for-word 

precision-recall 
e Fl: the harmonic mean of precision and recall, F = 2- precision-trecall 

4.3 Experimental details 

I trained three different models: (1) baseline with character-level embeddings, (2) baseline with 

self-attention, and (3) baseline with character-level embeddings and self-attention. Each model was 

trained for at least 25 epochs, though some ran a bit longer to 30 epochs. Note that there was not a 
gain in performance for training past 25 epochs, as the dev set negative log likelihood (NLL) would 
begin to go up due to the model over-fitting on the training data. All of the models were trained with 
a learning rate of 0.5 and a drop-out probability of 0.2. 

4.4 Results 

The following results are for the ID SQuAD track. 
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Figure 4: Plots from Tensorboard for various quantitative metrics. Note that the baseline appears in 
two colors because training was interrupted around epoch 20. 

The results were rather disappointing. The model with character-level embeddings was the only one 
to outperform the baseline on both the dev and test sets, but it was a rather minimal improvement



  

considering the required training time nearly doubled. The models with self-attention performed 
poorly overall, with the self-attention model performing worse than baseline on the dev set, and the 
combined character embedding and self-attention model performing better than baseline on the dev 
set but worse than the baseline on the test set. It was interesting how the models with the self-attention 
layer followed a slightly different curve for the various quantitative metrics. It is likely that all of 
these models would have benefited from the finetuning of hyperparameters. 

5 Analysis 

5.1 Performance on Answerable vs. Unanswerable Questions 

The primary difference between SQUAD 1.1 and SQuAD 2.0 is the addition of adversial unanswerable 
questions. The dev set used for this project contained 5,951 questions, with unanswerable questions 
making up 52.1% (3103) of those questions. 
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In the table above, we see that the models using self-attention performed better overall on unanswer- 
able questions. For answerable questions, the baseline model actually performed the best. This shows 
that most of the performance gain from the added model features came from improved performance 
on unanswerable questions. It is worth noting that the self-attention model predicted "no answer" 
more frequently for both question types when compared to the other models, and this behavior 
dragged down its performance for answerable questions. 

5.2 Length of Prediction 

Answerable Answerable Unanswerable Unanswerable 

  

Note: These mean and median values are calculated after excluding "no answer" predictions. 

For the length of prediction, even when we do not take into consideration "no answer" predictions, 
which would drag down the mean and median values across the board, but especially for the 
self-attention model, the self-attention model tends to predict slightly shorter answers, while the 
character embedding model tends to predict slightly longer answers. The combined model takes 
on characteristics of both the self-attention and character embedding models and ends up in the 
middle of the two. Something else to note is that when the models choose to predict an answer for 
unanswerable questions, these predictions actually tend to be slightly longer than the predictions 
made for answerable questions.



5.3 Performance by Question Word Type 

In addition to answerable and unanswerable questions, the SQUAD questions can also be broken 
down by what question word they contain. For this analysis, I chose to keep it relatively simple and 
break the questions down into what, when, where, who, which, why, and how questions. Questions 

that did not fit any of these categories were labelled as "other." 

3000 - 

# 
of

 
Qu

es
ti

on
s 

nN
 

cs
 Ss 

1000 -     
' ' 1 ' 1 1 

how when where which why other 

Question Types 

who 

Figure 5: Distribution of Dev Set Questions by Question Word Type 

what 

We can see that the dev set used for this project is very imbalanced when it comes to question type, 
with "what" questions being much more common than the other types. 
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Figure 6: Breakdown of Performance by Question and Model Type 

For answerable questions, the models generally perform the best on "when" questions, followed 
by "who" and "which" questions, though performance does vary by model. For example, the self- 
attention model performs better on "who" questions compared to other question types, and the 
combined model really struggles with "where" questions. All the models do poorly on "why" and 
"other" questions, and this may be due to a lack of training and dev set data for these two question 
types.



For unanswerable questions, "other" is still a weak point, but the models do surprisingly well on 
"why" questions. This may be because the models are more likely to predict "no answer" when they 
have less data and lower prediction confidence. Here, the self-attention model is a clear outlier in 
terms of performance on "other"-type questions, but this high success rate may be because of the 
small sample size of "other" questions in the dev set. It is also interesting how the combined model 
struggles with "why" questions compared to the other models, but it performs the best on "when" 
questions. The character embedding model performs quite consistently across the board and always 
matches or beats the baseline model’s performance. 

6 Conclusion 

In conclusion, I found that adding character-level embeddings gave a small performance boost 
over the baseline model. Adding a self-attention layer, on the other hand, did not improve overall 
performance because adding the layer increased the model’s tendency of predicting "no answer" on 
answerable questions. The combined model with both character-level embeddings and a self-attention 
layer performed better than the character-level embeddings model on the dev set, but this combined 
model performed poorly on the test set, possibly due to the added complexity. When evaluating all 
of my models holistically based on a combination of performance and required training time, the 
baseline actually performed the best. While incremental improvements can have impact, there is 
power in having a simpler model, especially when training time is a consideration. 

Due to time constraints, I was not able to experiment with finetuning hyperparameters, which could 
have lead to improved results. Beyond finetuning, future work could focus on shifting to an entirely 
different model architecture like Transformer-XL [8] rather than simply adding a self-attention layer 
to the baseline BiDAF model. 
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