
BiDAF with Self-Attention for SQUAD 2.0

Stanford CS224N Default Project - ID SQuAD Track

Michelle Huang
Department of Computer Science

Stanford University
huangmjy@stanford.edu

Abstract

The primary goal of this work is to build a QA system that improves upon a baseline
modified BiDAF model’s performance on the SQuAD 2.0 dataset. To achieve this
improvement, two approaches are explored. In the first one, the modified BiDAF
model’s embedding layer is extended with character-level embeddings. In the
second approach, a self-attention layer is added on top of the existing BiDAF
attention layer. The performance of these two approaches is evaluated separately
and also when combined together into a single model. The model with character
embeddings yielded the best performance on the test set, achieving an EM score
of 56.872 and a F1 score of 60.652. The self-attention model performed below
expectations overall, though it was the best model when it came to performance on
unanswerable questions.

1 Introduction

Question answering (QA) is a widely researched topic in the field of natural language processing.
The primary goal of QA systems is to answer a question correctly given a question and an asso-
ciated context paragraph. This task provides us with a quantitative measure of how well machine
learning models can "comprehend" text. QA systems have many commercial applications, with a
key application being incorporation into popular search engines such as Google to better serve the
information need of humans. These systems allow search engines to directly provide answers to
more basic questions, alleviating the need for humans to spend time reading through search results to
obtain an answer.

This paper focuses on building a QA system for the Stanford Question Answering Dataset (SQUAD),
which was first introduced as part of Rajpurkar et al. [2016] [1]. SQuAD is a structured dataset

that contains many (question, context paragraph, answer) triples derived from Wikipedia articles.
A more recent iteration of the SQuAD dataset, SQUAD 2.0, introduced adversarial unanswerable

questions, where the provided context paragraph does not contain an answer to the question [2].
Rapid progress has been made on the SQuAD challenge since release, with current state-of-the-art
models exceeding human performance. Most of the high-performing QA systems leverage pre-trained
contextual embeddings [3][4] to achieve their performance, but this project was intentionally limited
to using non-contextual GloVe word embeddings. It is important to note that while the state-of-the-art
models have exceeded human performance on the SQuAD dataset, the problem of question answering
is far from solved because real world data is not structured nicely like SQUAD.

This project aims to improve upon a pre-established baseline QA model by first incorporating
character-level embeddings and then adding in a self-attention layer similar to what is described in
Wang et al. [2017] [5]. I found that the addition of character-level embeddings improved performance
slightly at the cost of a significant increase in training time, while the addition of a self-attention
layer to the existing BiDAF model performed worse than the baseline. Combining character-level
embeddings with a self-attention layer led to improved performance on the dev set, but this variant
performed worse on the test set, possibly due to overfitting and the added complexity.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

Numerous architectures have been developed over the years to tackle the question answering problem
posed by the SQuAD dataset. In this section, I provide a brief overview of the two models that
inspired this work. Please note that the terms "question" and "query" will be used interchangeably
throughout this paper.

Start End Query2Context

m4 ng mr
2 Ua

‘L}-LI-L} LI u;
Modeling Layer

él }—-LI-L] LI 4
AA AA AA AA

9 ||) 9 PLL | Or

jie Pow Tf Query2Context and Context2Query

oe Attention Uy

hy Ne hr U4 uy Up
Phrase Embed s oa uy | iia 2a
Word Embed

Layer CO
Character Word Character

Embed Layer = = 4 = ce cI Embedding

X4 Xo X3 XT qi Gu
t J J -| | Char-CNN

Context Query

Figure 1: Full BiDAF Model Architecture

Back in 2016, before the rise of models using pre-trained contextual embeddings, the Bidirectional
Attention Flow (BiDAF) model introduced one of the more significant advances in QA model

architecture [6]. BiDAF utilized a bi-directional long short-term memory RNN (LSTM) with a

bi-directional attention flow network to predict the starting and ending positions of the answer in the
context paragraph. Here, "bi-directional" means there is both context-to-query and query-to-context
attention. This BiDAF model is used as the baseline for this project, though the baseline model differs
slightly in that it only contains word embeddings in its embedding layer while the original model’s
embedding layer contained both word and character-level embeddings.

R-Net, a later model introduced in 2017 [5], builds on the BiDAF architecture by combining BiDAF’s
context-to-query attention layer with a self-attention layer. R-Net performed better than BiDAF on the
SQuAD 1.1 test dataset, achieving an EM score of 71.3 and F1 score of 79.7 compared to BiDAF’s
EM score of 68.0 and FI score of 77.3 respectively. Similar to R-Net, this project attempts to improve
upon a modified BiDAF model’s performance on the newer SQuAD 2.0 dataset by incorporating
self-attention into the model architecture.

3 Approach

I extended the baseline model with character-level embeddings and a self-attention layer.

3.1 Baseline

The baseline model used for this project is a BiDAF model without character-level embeddings
provided by the CS224N course staff. More details can be found in the project handout.

3.2 Character Level Embeddings

Let wj,...,we € N be input word indices, and let c,,...,c, € N be the input character indices
corresponding to the word indices. The embedding layer of the baseline model performs an embedding

lookup to convert the word indices into word embeddings v,...,vz € R? for both the context
paragraph and the query, producing embeddings c,...,cn € R? for the context and embeddings
M1,---.¢m € R? for the query. To augment the baseline embedding layer, I added character-level
embeddings for both the context paragraph and query. First, I performed the embedding lookup
to convert the character indices into character embeddings, then I applied dropout and passed the
output through a 2D convolutional layer to learn the embeddings. I decided to use a 2D CNN in my
implementation because the character-level embedding returns a 4D tensor. After the CNN step, I
applied max pooling to the character-level embeddings before concatenating them to the projected
word embeddings.

3.3 Self-Attention Layer

Q G2 Gr

7 Self-Attention

Query2Context and Context2Query

Attention

hy; No hr Uy uy

= =

‘LI-LI-L [] L]
OO Word Character

Embedding Embedding

a Oo co oO -

Xy Xo X3 XT a: Qu ey
L J l j

Context Query

Figure 2: BiDAF Modified with Self-Attention Layer

For the self-attention layer, I used multi-headed attention with 8 attention heads, with each head using

scaled dot-product attention, as described in Vaswani et al. [2017] [7]. I included this layer after the
BiDAF attention layer.

4 Experiments

4.1 Data

Question: What did the Edict do for Huguenots in France?
Context: The pattern of warfare, followed by brief periods of peace, continued for nearly another quarter-

century. The warfare was definitively quelled in 1598, when Henry of Navarre, having succeeded to the French
throne as Henry IV, and having recanted Protestantism in favour of Roman Catholicism, issued the Edict of

Nantes. The Edict reaffirmed Catholicism as the state religion of France, but granted the Protestants equality
with Catholics under the throne and a degree of religious and political freedom within their domains. The Edict
simultaneously protected Catholic interests by discouraging the founding of new Protestant churches in

Catholic-controlled regions.[citation needed]
Answer: granted the Protestants equality with Catholics

Figure 3: Example of a SQuAD (question, context paragraph, answer) triple

This project uses a portion of the SQUAD 2.0 question answering dataset [2], which contains
approximately 141,000 (question, context paragraph, answer) triples derived from Wikipedia articles,
with answers crowdsourced from Amazon Mechanical Turk. The data is split into training, dev, and
test sets with about 130,000, 6,000 and 6,000 examples respectively.

Other data provided by the course staff include pretrained GloVe word embeddings and pretrained
character-level embeddings.

4.2 Evaluation method

I will be using the official SQUAD evaluation metrics, which are Exact Match (EM) and F1 score.

These two metrics are briefly described below.

e EM: a strict binary metric measuring whether the system output matches at least one of the
ground truth answers provided word-for-word

precision-recall
e Fl: the harmonic mean of precision and recall, F = 2- precision-trecall

4.3 Experimental details

I trained three different models: (1) baseline with character-level embeddings, (2) baseline with

self-attention, and (3) baseline with character-level embeddings and self-attention. Each model was

trained for at least 25 epochs, though some ran a bit longer to 30 epochs. Note that there was not a
gain in performance for training past 25 epochs, as the dev set negative log likelihood (NLL) would
begin to go up due to the model over-fitting on the training data. All of the models were trained with
a learning rate of 0.5 and a drop-out probability of 0.2.

4.4 Results

The following results are for the ID SQuAD track.

AVNA EM

EJ Oe 2n=0

Legend

@ baseline . @ char embeddings @ self-attention + char embed
@ baseline cont'd self-attention

Figure 4: Plots from Tensorboard for various quantitative metrics. Note that the baseline appears in
two colors because training was interrupted around epoch 20.

The results were rather disappointing. The model with character-level embeddings was the only one
to outperform the baseline on both the dev and test sets, but it was a rather minimal improvement

considering the required training time nearly doubled. The models with self-attention performed
poorly overall, with the self-attention model performing worse than baseline on the dev set, and the
combined character embedding and self-attention model performing better than baseline on the dev
set but worse than the baseline on the test set. It was interesting how the models with the self-attention
layer followed a slightly different curve for the various quantitative metrics. It is likely that all of
these models would have benefited from the finetuning of hyperparameters.

5 Analysis

5.1 Performance on Answerable vs. Unanswerable Questions

The primary difference between SQUAD 1.1 and SQuAD 2.0 is the addition of adversial unanswerable
questions. The dev set used for this project contained 5,951 questions, with unanswerable questions
making up 52.1% (3103) of those questions.

Model

ase

Answerable Qs | Unanswerable Qs for Answerable Qs

-Attention

+

In the table above, we see that the models using self-attention performed better overall on unanswer-
able questions. For answerable questions, the baseline model actually performed the best. This shows
that most of the performance gain from the added model features came from improved performance
on unanswerable questions. It is worth noting that the self-attention model predicted "no answer"
more frequently for both question types when compared to the other models, and this behavior
dragged down its performance for answerable questions.

5.2 Length of Prediction

Answerable Answerable Unanswerable Unanswerable

Note: These mean and median values are calculated after excluding "no answer" predictions.

For the length of prediction, even when we do not take into consideration "no answer" predictions,
which would drag down the mean and median values across the board, but especially for the
self-attention model, the self-attention model tends to predict slightly shorter answers, while the
character embedding model tends to predict slightly longer answers. The combined model takes
on characteristics of both the self-attention and character embedding models and ends up in the
middle of the two. Something else to note is that when the models choose to predict an answer for
unanswerable questions, these predictions actually tend to be slightly longer than the predictions
made for answerable questions.

5.3 Performance by Question Word Type

In addition to answerable and unanswerable questions, the SQUAD questions can also be broken
down by what question word they contain. For this analysis, I chose to keep it relatively simple and
break the questions down into what, when, where, who, which, why, and how questions. Questions

that did not fit any of these categories were labelled as "other."

3000 -

of

Qu

es
ti

on
s

nN

cs
 Ss

1000 -
' ' 1 ' 1 1

how when where which why other

Question Types

who

Figure 5: Distribution of Dev Set Questions by Question Word Type

what

We can see that the dev set used for this project is very imbalanced when it comes to question type,
with "what" questions being much more common than the other types.

EM Performance Breakdown by Question and Mode! Type EM Performance Breakdown by Question and Model Type
for Answerable Questions for Unanswerable Questions

when ~

5

Qu
es

ti
on

Ty
pe

- — m ST

60 ; - on

Exact Match Score 7 Exact Match Score

Legend

Hl Baseline [CharEmbeddings J Self-Attention __Self-Attn + Char Emb

Figure 6: Breakdown of Performance by Question and Model Type

For answerable questions, the models generally perform the best on "when" questions, followed
by "who" and "which" questions, though performance does vary by model. For example, the self-
attention model performs better on "who" questions compared to other question types, and the
combined model really struggles with "where" questions. All the models do poorly on "why" and
"other" questions, and this may be due to a lack of training and dev set data for these two question
types.

For unanswerable questions, "other" is still a weak point, but the models do surprisingly well on
"why" questions. This may be because the models are more likely to predict "no answer" when they
have less data and lower prediction confidence. Here, the self-attention model is a clear outlier in
terms of performance on "other"-type questions, but this high success rate may be because of the
small sample size of "other" questions in the dev set. It is also interesting how the combined model
struggles with "why" questions compared to the other models, but it performs the best on "when"
questions. The character embedding model performs quite consistently across the board and always
matches or beats the baseline model’s performance.

6 Conclusion

In conclusion, I found that adding character-level embeddings gave a small performance boost
over the baseline model. Adding a self-attention layer, on the other hand, did not improve overall
performance because adding the layer increased the model’s tendency of predicting "no answer" on
answerable questions. The combined model with both character-level embeddings and a self-attention
layer performed better than the character-level embeddings model on the dev set, but this combined
model performed poorly on the test set, possibly due to the added complexity. When evaluating all
of my models holistically based on a combination of performance and required training time, the
baseline actually performed the best. While incremental improvements can have impact, there is
power in having a simpler model, especially when training time is a consideration.

Due to time constraints, I was not able to experiment with finetuning hyperparameters, which could
have lead to improved results. Beyond finetuning, future work could focus on shifting to an entirely
different model architecture like Transformer-XL [8] rather than simply adding a self-attention layer
to the baseline BiDAF model.

References

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQUAD: 100,000+ ques-
tions for machine comprehension of text. In CoRR, abs/1606.05250, 2016.

[2] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQUAD. In Association for Computational Linguistics (ACL), 2018.

[3] Jacob Devin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In arXiv preprint arXiv: 1810.04805,
2018.

[4] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton

Lee, and Luke Zettlemoyer. Deep contextualized word representations. In arXiv preprint
arXiv: 1802.05365, 2018.

[5] Natural Language Computing Group and Microsoft Research Asia. R-net: Machine reading
comprehension with self-matching networks. In Microsoft Research, 2017.

[6] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional

attention flow for machine comprehension. In arXiv preprint arXiv: 1611.01603, 2016.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In arXiv preprint
arXiv: 1706.03762, 2017.

[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Rusian Salakhutdinov.

Transformer-xl: Attentive language models beyond a fixed-length content. In arXiv preprint
arXiv: 1901.02860, 2019.

