
Improved QA systems for SQUAD 2.0

Stanford CS224N Default Project ID SQuAD Track

Pablo Diaz Chloe He
Department of Chemical Engineering Department of Biomedical Informatics

Stanford University Stanford University
pablo98@stanford. edu chloehe@stanford.edu

Akshay Nalla
Department of Aeronautics and Astronautics

Stanford University
analla@stanford.edu

Abstract

Question answering (QA) is a cornerstone in the NLP domain that has produced

innovations that span many other tasks. We developed a question answering system
with improved performance compared to the baseline Bi-Directional Attention Flow
(BiDAF) starter model provided to us. We implemented two versions of character
embeddings, an answer pointer decoder, and a self-attention layer into the original
baseline model. We then evaluated the effects of each of these implementations.
Our best model, which contained all three layers, produced an EM score of 59.83
and F1 score of 63.37 on the test sets, while also showing a significant increase in
the model learning speed. We anticipate that this work will aid in the continuing
development of efficient question answering systems.

1 Introduction

Question answering (QA) has been an active research area within the field of deep learning over the

past years. One of the models that has pushed the field of question answering is the Bi-Directional
Attention Flow (BiDAF), which is a multi-stage hierarchical network that represents context as
different types of embeddings and uses bi-directional attention flow to obtain a query-aware context
representation. Although the performance of this model has been surpassed, this model remains
influential in the domain of QA.

BiDAF is a closed-domain, extractive question-answering model. In order to answer a query, BiDAF
must have access to a context text that contains information to answer the query. BiDAF contains
three main parts: embedding layers, attention and modeling layers, and an output layer. The first
layers map representation of words from strings into high-dimensional vectors of numbers. The
second layers transforms these number-based vectors into “query-aware context representation”’.
Finally, the output layer transforms these representations into a probability vector that determines the
answer. A graphic of the BiDAF architecture is shown in Figure 1.

The goal of this project is to train a Bidirectional Attention Flow (BiDAF) neural network model
that performs better than the baseline model. We are interested specifically in investigating the use
of character-level embeddings, conditioning end prediction on start prediction, and self-attention.
We chose this set of techniques because they frequently appear in high-performing machine compre-
hension systems. Self-attention in particular has been incredibly popular in recent years and proven
to be one of the foundations for transformers. Our secondary goal is to explore the hyperparameter
search space and experiment with other types of word embeddings as well as ensembling methods.
Hyperparameter tuning includes regularization, optimization algorithms, and changing learning rate
and batch size.

Stanford CS224N Natural Language Processing with Deep Learning

Start End Query2Context

Sofimax
Output Layer

 Modeling Layer

Attention Flow
Layer

 Contextual
Embed Layer

Word Embed

Layer Word Character
Embedding Embedding

Context Query

Character
Embed Layer

Figure 1: Bi-Directional Attention Flow model architecture [1].

2 Related Work

2.1 BiDAF

Seo et al. introduced the Bi-directional Attention Flow for Machine Comprehension model, otherwise
known as BiDAF, in a paper published in 2018 [1]. The authors evaluated BiDAF’s question-
answering capability using the SQuAD dataset and cloze-style reading comprehension through
the CNN and Daily Mail datasets. At the time of its publication, BiDAF outperformed traditional
baselines and bi-directional attention flow proved to be a valuable tool in improving NLP model
performance.

The BiDAF model consists of six layers: character embedding layer, word embedding layer, con-
textual embedding layer, attention flow layer, modeling layer, and output layer. In subsequent work,
researchers explored alternatives to replace or add to many of the original components, attempting to
further improve the performance of the state-of-the-art model.

The implementation of BiDAF was intended to improve machine comprehension (MC) for query
answering. While the BiDAF model proved to have much promise in the field of MC, its value
expanded past the initial domain. Further research was done to incorporate bi-direction attention flow
into models for tasks such as image-text matching [2]. The BiDAF model could prove to be pivotal
to incorporating MC into research areas such as computer vision.

2.2 Character Embeddings

While the original BiDAF model included a character-level embedding layer in addition to word
embedding and contextual embedding, the character embedding was excluded in the implementation
of the baseline model. Character-level embeddings are based on one-dimensional convolutional
neural networks (1D-CNN) that generate embeddings based on character-level compositions [3]. The

advantage of 1D-CNN is that it can extract information on a subword level from shorter segments of
input sequences. This approach allows the model to condition on the internal structure of words, and
is useful in case we find words that are outside of the training vocabulary. Character-level embeddings
have been shown to improve performance in NLP models. Since the baseline model excluded
character-level embeddings from the BiDAF model, a natural extension would be to implement the
character embeddings into our model.

2.3 Answer Pointer

In their “Machine Comprehension Using Match-LSTM and Answer Pointer” paper, Wang and Jiang
proposed two answer pointer models that were used in place of the typical decoder layer as a final
layer, which convert the hidden states from the previous layer to probabilities as outputs [4]. In the
original BiDAF model, the output layer uses a combination of attention outputs and modeling outputs
to compute probability distributions of the start index and the end index over the entire context,
separately. The Boundary Answer Pointer model provides an alternative, conditioning the probability

for the end location on the distribution of the start location. This could be an advantageous approach
specifically in the domain of extractive question answering.

2.4 Self-Attention

Since the “Attention is All You Need” paper was published in 2017, the attention mechanism attracted
considerable attention for use in various domains. Self-attention is a variation of it and was proposed
by Wang et al. in 2017 in their R-NET model [5]. Self-attention allows a hidden state in a certain
timestep to attend the previous hidden layers. This means that the inputs are interacting with each
other in order to calculate attention scores of certain inputs with respect to others in different parts of
the entire passage. This allows the model to choose which parts of the passage to pay more attention
to, which is useful especially when dealing with long sequences of contexts.

3 Approach

We began by implementing a character embedding layer in addition to the word embedding layer,
such that the character embeddings and the word embeddings were concatenated and fed together
to the highway network in the last step of the embedding layer. Next, we added an answer pointer
decoder in place of the original output layer and a self-attention layer immediately after the attention
flow layer in the original BiDAF model. In the following sections, we describe each of the three
components in detail.

3.1 Character embedding

We implemented two versions of the character embedding layers. The first version involves passing
the pretrained character embedding through 2D convolutions followed by ReLU activation and
learning a feature map for every given filter width. Then, for each filter of the given filter width, we
used a maxpooling operation over all the outputs of that filter. We now have various feature matrices
taken from each convolution that we concatenate to be the character matrices for the input word.
We repeat this process for all the words in the sequence, learning an character embedding for every
word. The number of convolutions will be determined by the maximum filter width and the number
of output channels, both of which are hyperparameters. The first convolution starts with a kernel
width of one. The next convolution will have a kernel width of two, and so on. The last convolution

will be the one that has the maximum kernel width. We used 25 to 100 filters for every filter width.
The kernel height is the embedding dimension and is the same for all convolutions.

The second version involves passing the embedding through three 1D convolutional layers. The
difference is that the output of one convolution is the input to the next convolution. The kernel size
gets smaller as the input gets deeper into the network. The kernel size starts at 7, then 5 and finally 3.
After each convolution, a ReLU function is applied to the embedding followed by a dropout layer
with a 20% probability. We also implemented 1D batch normalization layers after each dropout layer.
A feature matrix is then created by taking the maximum values of the embedding through the width.
At the end of this network, the output will be the concatenation of the three feature matrices.

3.2 Answer pointer

Our implementation of the answer pointer takes the set of representations m ,...,.mn € R24
produced by the previous modeling layer and runs for two timesteps. At each timestep, the layer
learns an attention weight vector (;, through the formulas below, which is used as the probability
distribution for the start or end location.

Fy, = tanh(VM + (W°hg_, + b*) @ en) (1)

Be = softmax(v7 Fy +c@en) (2)

where JN is length of the context and M ¢ R‘*?# is a matrix representation of the representations
M1, +.-; Mn. + ® en repeats the scalar or vector N times to produce a vector or matrix with the

appropriate dimensions. V € R?4@*", W* ¢ R¥#**, b* c R4,v € R", andc € Rare all learnable
parameters.

The probability distribution of the second time step is dependent on that of the first time step through
both G; and the hidden and cell states of the LSTM, such that

= ESTM(M Bf, hi_1) (3)
Lastly, we model the probability of generating an answer as

p(as|M)p(aclas, M) = Bs - Be (4)

such that 3, and (, are the probability distributions (4; above for each of the two timesteps) for the

start and end locations, respectively. The loss function is the same:

loss = — log p(as|M) — log p(acl|as, M) (5)

3.3. Scaled Dot-Product Self-attention

We implemented self-attention after the bidirectional attention flow layer. The self-attention layer
takes the bidirectional attention output as input and uses key, query, and value weight matrices to
calculate attention scores. The key and query weight matrices are initialized with a shape of hidden
size xp, where p was a hyperparameter set to be 284. The value weight matrix is of shape hidden
size x hidden size. The input attention score is multiplied by these weights to produce key,
query, and value matrices. Attention scores are obtained for each input from the query and key
matrices, which are then put through a softmax function.

Attention Scores = softmax(QK 2) (6)

These attention scores are multiplied by the value matrix to produce a final attention output.

Output = softmax(QK7)V (7)

The attention outputs are passed through ReLU activation layer before being passed further down the
model to the answer pointer layer.

output #1 output #2 output #3

| |

Self-attention

query score score ‘
LL

.
B
i
—

5

Ce

Lt |
value key value value

ne ee ae

input #1 input #2 input #3

Figure 2: Self-attention calculation example [6]

4 Experiments

4.1 Data

We used the Stanford Question Answering Dataset (SQuAD) 2.0 [7]. SQUAD 2.0 contains 150k

questions crowd-sourced on a database of Wikipedia articles. Among these 150k questions, 100k

are answerable questions, whereas the rest do not have answers in the contexts provided. The 50k
unanswerable questions were written to look similar to the answerable questions. They are relevant
to the given paragraphs, which contain plausible answers or similar wording, but not actually an
answer to the question. This makes the question answering task much more challenging - in addition
to finding the relevant piece of context information, the model must also determine if the question is
answerable by any of the given contexts. This also means that, by always predicting no-answer, a
model can already achieve ~50% EM/F1 very early in training.

Distribution of Question Lengths 53008 Distribution of Context Lengths
16000

14000

12000

10000

Co
un

t

Co
un

t

8000

6000

4000

2000

Oo 10 20 30 40 50 50. 100 150 200 250 300 350 400

Number of words Number of words

Figure 3: Distributions of question lengths and context lengths in the training dataset

4.2 Evaluation method

We used Exact Match (EM) score and F1 score for evaluation, with EM being a binary measure strictly
counting the number of exact matches, and F1 being a less strict metric measuring the harmonic mean
of precision and recall. For any given question, we will score the generated output against all three
human-provided answers and take the highest EM and F1 scores.

4.3 Experimental details

By adding in each of the three components individually and in combinations, we conducted ex-
periments that mimic an ablation study. Specifically, we ran experiments with each of the two
aforementioned character embeddings, answer pointer, and self-attention separately, and also experi-
ments with all three implementions.

We experimented with several different hyperparameters such as learning rate, training time, and
batch size. Ultimately, we settled upon a learning rate of 0.5 and batch size of 32, which consistently
produced the best results in our models. We trained each model for up to 30 epochs, but in the interest
of time and efficient model tuning, once the model’s EM and F1 scores started to plateau or decrease
and the loss suggested overfitting, we terminated training sessions.

4.4 Results

The resulting EM and F1 metrics for each model iteration can be found in Table 1. While the original
implementation of character embeddings did not result in a notable change from the baseline, the
second iteration of the character embeddings led to a significant improvement. When implemented
separately, both the self-attention and answer pointer model provided improved results as well. As
expected, combining all three implementations (using the second version of the character embeddings)
produced the best results for both metrics. We also added batch normalization layers after every
convolutional layer in the character embedding layer to help stabilize training. This addition produced
mixed results since, although both EM and F1 scores increased on the validation set, these scores

decreased on the test set. Visualizations of EM and FI scores on the validation set over training can
be seen in Fig. 4.

We also made some unexpected observations regarding our results. In particular, the implementations
of self-attention and answer pointer did not improve the model performance as much as we expected,
based on performance outcomes put forth by the respective papers. Our first version of character
embeddings, though more complex than the second version and actually more similar to the original

Table 1: Model Results

Model TestEM ‘TestF1 DevEM Dev FI

Baseline - - 56.98 60.28
Character embeddings V1 56.89 60.84 56.97 60.55
Character embeddings V2 - - 60.04 63.39

Self-Attention - - 59.43 62.7
Answer Pointer - - 57.56 61.09

All implementations 59.83 63.37 60.58 63.77
All implementations with batch normalization 58.99 62.56 61.57 64.83

implementation in the BiDAF paper, produced negligible performance improvements. With many
of the experiments that we ran, the improved models learned much faster (the curve was steeper at
the beginning), but the scores also started plateauing earlier on in training. Lastly, among all the
models we tested, the self-attention model seemed to be the only one that did not start overfitting
to the training set. Its negative log likelihood (NLL) on the dev set continued to decline or stayed
mostly flat even after 1.5M iterations, which is where all the other models started overfitting and had
rising NLLs.

EM FI
tag: dev/EM tag: dev/F1

66

62
62

58 58

54 54

50 50

46 46

0 500k 1M 1.5M 2M 25M 3M 3.5M 0 500k 1M 1.5M 2M 25M 3M 3.5M

Figure 4: EM and F1 metrics for each model: baseline (orange - lower), character embeddings V2
(orange - upper), self-attention (pink), answer pointer (green), combined model (blue), combined
model with batch normalization (red)

5 Analysis

We tried to better analyze and understand the successes and weaknesses of our models by inspecting
the predicted outputs of each model.

We saw that the no-answer questions were challenging for our models. These questions are well-
constructed to have very similar phrasing and mentions of key words frequently repeated in the
context. For that reason, they were able to sometimes fool the model into producing answers, even
though the questions are actually unanswerable.

By analyzing the text outputs of our models in Tensorboard, we hoped to get a better understanding
about our model’s question answering capabilities. Unfortunately, there did not seem to be a consistent
pattern in which a single model performed better on a specific topic compared to other models. It
was interesting to note that our final model correctly answered questions about about Scottish and
Roman languages which the baseline could not. However, the sample size was too small to draw a
meaningful conclusion from.

Overall, the model performed equally well for questions and contexts of various lengths, as seen in
Fig. 5.

Distribution of Context Lengths for Questions Distribution of Question Lengths for Questions

 Answered Correctly vs Incorrectly in the Dev Set Answered Correctly vs Incorrectly in the Dev Set

8 Incorrect 8 Incorrect

400 + © Correct © Correct

300 +

Co
un
t

100 4 50 100 150 200 250 300 350 15 20

Number of words Number of words

Figure 5: Context length and answer length distributions for questions answered incorrectly (blue) or
correctly (orange) in the dev set

6 Conclusion

In this project, we developed a question-answering system using the BiDAF model as a backbone.
We implemented two types of character-level embeddings, a self-attention layer immediately after the
bidirectional attention flow layer, and an answer pointer decoder motivated by the Pointer Network
to replace the original output layer. With the addition of each of these three components, we saw
improvements in EM and F1 scores. Our best-performing model was a model incorporating all three
layers, achieving an EM score of 59.83 and an FI score of 63.37 on the test set. In further analysis of
the predictions, we found that the well-constructed no-answer questions were challenging for our
model, but that the model performed equally well across questions and contexts of different lengths.

Potential avenues for future work could be to explore additional hyperparameter tuning such as
dropout rate, a wider range of learning rates, number of convolutional layers, kernel size and number
of output channels. In addition, an alteration to the self attention model would be to include a scaling
factor before the softmax layer. This scaling factor would help prevent the gradients of the softmax
function from becoming extremely small [8].

7 Contributions

Chloe: Implemented both versions of character embeddings and answer pointer and worked on the
final report.

Pablo: Contributed to the second version of the character embeddings, prepared the first virtual
machine environment, performed initial tests of the baseline in the virtual machine, analyzed the

performance of predictions versus answers and worked on the final report.

Akshay: Worked on the initial character embeddings, self-attention implementation, test output
submissions and the final report.

Every member contributed equally to data analysis.

References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional

attention flow for machine comprehension, 2018.

[2] Yiling Wu, Shuhui Wang, Guoli Song, and Qingming Huang. Learning fragment self-attention
embeddings for image-text matching. In Proceedings of the 27th ACM International Confer-
ence on Multimedia, MM ’ 19, page 2088-2096, New York, NY, USA, 2019. Association for

Computing Machinery.

[3] Yoon Kim. Convolutional neural networks for sentence classification, 2014.

[4] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer,
2016

[5] W Wang, N Yang, F Wei, B Chang, and M Zhou. R-net: Machine reading comprehension with

self-matching networks. Natural Lang. Comput. Group, Microsoft Res. Asia, Beijing, China,
Tech. Rep, 5, 2017.

[6] Raimi Karim. Tlustrated: Self-attention. https://towardsdatascience.com/illustrated-self-
attention-2d627e33b20a, 2019.

[7] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQUAD. In Association for Computational Linguistics (ACL), 2018.

[8] A Vaswani, N Shazeer, and et al. Attention is all you need. 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017.

