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Abstract 

Machine question answering (machine QA) is one of the cornerstone problems of 
modern NLP [1]. The problem comes in many variants: open-domain versus closed- 
domain; generative versus extractive; conversational versus singular; speech-based 
versus text-based. In this paper, we explore the closed-domain, extractive, singular 
speech-based question answering problem. First, we recalculate the standard ASR- 
BERT cascading approach using SoTA methods for both. Then we explore a 
novel continuous integrate-and-fire (CIF) method for aligning and transformer rich 
acoustic representation to semantic representations. 
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2 Introduction 

Machine question answering (machine QA) is one of the cornerstone problems of modern NLP 
[1]. The problem comes in many variants: open-domain versus closed-domain; generative versus 
extractive; conversational versus singular; speech-based versus text-based. In this paper, we explore 
the closed-domain, extractive, singular speech-based question answering problem. As a closed- 
domain problem, a passage and question set are passed to a model and the model is tasked with 
answering the questions based on the passage. By restricting to the extractive task, the model’s goal 
is to return the span of words in the passage that answers a posited question. As a singular task, the 
model does not need to retain dialog or conversation information to answer subsequent questions; 
rather, each question is independent of other questions and is dependent on the passage itself. As we 
are interested in the speech-based QA task, the passage passed to model is some instance of spoken 
language data. Typically, this means the audio recording of a spoken passage, a signal transform of 
such data, or a transcript, either by a human or with automated speech recognition (ASR) technology. 
I will refer to this task from here on as spoken question answering (SQA) 

According to various sources [2] [3] [4], SQA is a more difficult problem than the typical text-based 

QA problem. While there are likely various causes, the current consensus is that that overwhelming 
source is ASR-driven information loss due to errors. The analyses of [2] [3] shown an average 

decrease of 19.2 F1 points across six different methods for machine QA when the models were 
trained on text data exclusively and then applied to both text-based QA datasets and spoken-then- 
transcribed versions of those same datasets. Solving the SQA problem opens doors to analyzing 
large amounts of spoken-language corpora in much the same way we do now text-based corpora. 
With competent success in the SQA task posed here, we are better suited to expand to open-domain, 
conversational, and generative QA tasks in the future. 

One obvious proposal for augmenting performance at the SQA task is improving the performance 
of the ASR systems used to transcribe the audio data. In the [2] analysis, they cited an average 
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word-error-rate of 22.73% on a spoken-then-transcribed version of the Stanford Question Answering 
Dataset (spoken SQuAD). Given the rapid performance rise of the state of the art (SoTA) ASR 

systems since 2018, I suspect better systems will show much better performance. In this analysis, I 
determine the performance of the ROBERTa model for question answering on wav2vec2-ctc ASR to 
see if better ASR techniques lessen or eliminate the gap between SQA and text QA. 

Another another class of SQA proposals go beyond better transcription and look to leverage both 
audio and text feature of the data to improve SQA performance. Generally, these proposal look to 
fuse audio-based phonetic and text-based semantic representations together to generate richer overall 
representations [2]. [3] [5]. There are many methods proposed for such fusion, and currently the 

best method is undetermined. Even it is the case that better ASR performance greatly augments 
performance on SQA tasks, such fusion methods may still be significantly valuable for more advanced 
spoken language processing tasks. For instance, we can imagine a joint sentiment-classification and 
SQA problem where the answer depends on both what was said and how it was said. Such fusion 
methods provide approaches to these more difficult yet useful problems. 

In this analysis, I was interested in trying a novel approach to the SQA task: a continuous integrate- 
and-fire based fusion method proposed by Yi et al [6] for low-resource ASR. They use continuous 
integrate-and-fire to fuse wav2vec2 embeddings [7] with BERT embeddings [1] to generate robust, 
information-rich phonetic-semantic embeddings. Given that BERT-based approach have dominated 
the landscape of text QA in recent year [1], I was interested in how this method would perform in the 
context of SQA. 

3 Related Work 

In the QA literature, there is an existing precedent for fusing multi-modal information to enhance 
task performance. In Lu et al [8], they use a cross-attention to combine image and word presentation 
to create visio-linguistic representations for image-text question answering. In Zhang et al[9], they 
use multi-headed attention to aggregate semantic and entity representations to improve on various 
NLP tasks. 

In each of these tasks, the authors leverage self-attention transformer techniques that have shown to 
produce SoTA results for various NLP tasks by learning infromation-rich representations through 
various self-supervised learning objectives. The inaugural form of this technique comes from 
Devlin et al’s BERT (Bidirectional Encoder Representation from Transformers) model for language 
representation. BERT and other BERT-like model have shown the power of rich representations 
generate via contrastive learning (amongst other self-supervised tasks). Taking this to the next step, 
[7] showed that similar techniques could produce richly representative embeddings for audio data in 
wav2vec 2.0. 

More specifically to the SQA task, many have proposed various techniques for audio-text fusion. 
With SpeechBERT, [3] use encoder-decoder model to generate audio-word embeddings from Mel 
Frequency Cepstral Coefficients with an /1 distance-constraint between audio-word embedding and 
BERT-based text-word embeddings to create jointly phonetic-semantic embeddings. You et al [5] 
propose a knowledge-distillation technique that leverages ground truth text transcription and audio 
data to train a model that can correct for ASR errors. 

As an example of a technique using both audio and text to solve problems, [10] leverage ASR 
transcriptions and maximum-entropy based sentiment classification to determine the sentiment of 
YouTube videos. They show that they can achieve success on a difficult sentiment classification task 
even with a relatively high ASR error rate. 

4 Approach 

4.1 Baseline: BERT on wav2vec2 ASR Transcripts 

As there are many different approaches for ASR, choosing one is a particular design choice fir this 
analysis. I decided to use the wav2vec 2.0 plus connectionist temporal classification decoding (CTC) 
[7] for ASR transcription. Using wav2vec 2.0 embeddings and CTC decoding alone achieves SoTA 
performance on the Librispeech dataset. Furthermore, it provides a nice benchmark for testing my 
CIF approach by using the same rich wav2vec vectors in an alternative way.



Take WV to be the transform from audio samples of context passages £_ to wav2vec 2.0 embeddings 
w € R°v*hw, where s,, is the sequence length and h,, is the size of the output hidden layer. These 
hidden state are fed through a linear layer and decoded using CTC decoding to produce a sequence 
of characters c. These characters are concatenated with the text-characters of the context question 
questions, separated by a [CLS] token. This sequence of characters is tokenized, converted to 
embedding vectors EropertaR*?’ xh» and then fed into a ROBERTa model, producing a sequences of 

hidden states Hroperta € R**”* where sy is the sequence length of tokenized RoBERTa inputs and 

hp is the output hidden size of ROBERTa. To fine tune the model for extractive question answering, 
start and end vectors S, EF € RP are multiplied against the output hidden states and a softmax function 
is applied, producing a distribution of start and end points for the question answer. During training, a 
negative log likelihood loss function is used to train the output vectors. 

4.2 CIF-based BERT-wav2vec Fusion 

Roughly speaking, the method proposed here approaches the SQA problem with an encoder-decoder 
model with a CIF bottleneck. The encoder is a the wav2vec 2.0 transformer pipeine; the decoder is the 
RoBERTa transformer pipeline. As I have already talked about wav2vec 2.0 and the motivations for 
using it, I will talk brief about ROBERTa model, and the elaborate on the CIF method and motivation. 

4.2.1 RoBERTa 

RoBERTa was developed by [11] as a better trained version of the original BERT model. The authors 
found that the training methods of the original BERT model severely under exploited its potential and 
more sophisticated training led to better overall results. As such, I wanted to use this novel model in 
place of the original BERT model for my experiments. 

4.2.2 Continuous Integrate-and-Fire 

Continuous integrate-and-fire (CIF) methods have a long history in neural machine learning, and 
more recently, some have used such technique to innovate novel methods for audio-text alignment 
for ASR [12] [6].CIF methods are used to transform between sequences of different lengths but 

shared information. Mathematically, take 71,...,2Z, to be m embeddings in Riz| of sequential 

audio data and wj,..., Wn to be n embeddings in RI“! of sequential text data. A CIF transform 

C : Ritlxm _, RI“I<” transforms one sequence of representations to another by constrained 
combination of consecutive representations. 

There are many ways to define the function C’ to generate CIF embeddings. Generally, a function is 
applied to the original sequence of representations to create a corresponding sequence of weights. 
Consecutive vectors are (partially) combined such that the sum of the contributed representation 
weights adds up to 1. This enforces a soft and monotonic alignment strategy that forces the trans- 
formed inputs into the correct shape. As an example of this sort of process, imagine you have 
four vectors v1, V2, V3, va With representation weights 0.6, 0.3, 0.2, 0.9 and you are transforming to a 
sequence with 2 vectors w1, wa. Then w; = 0.6v1 + 0.3v2 + 0.1u3, we = 0.1v3 + 0.9v4. Dong et 

al use a one-dimensional convolution layer to generate the representation weights. However, in this 
analysis, I was curious if the simpler method proposed in [6] would be sufficient. 

In [6], to generate the representation weights a1,...,d@m from a sequence of audio embeddings 
L1,.-+,Lm, they use a, = 21 [—1],...,@m = %m[—1]. A sigmoid function is a applied to each of 
the weights generating a1 = @1,...,Qm =m. As such, a; € [0, 1] for all ¢ weights. Then, a new 

set of CIF embeddings u;,/ € 1,...,7 are generated by monotonic, partial linear combination of the 
audio embeddings by the representation weights. The monotonicity constraint is applied because a 
vector X,, can only be added to a CIF embedding w, if all other vectors x;,t < m have been added 

to us, < 1, The partiality constraint is applied because some audio embeddings will fall on the 
boundary between wu; and w +1; the representation weight must be split between the two embeddings. 

To given the model a change to adjust to the CIF embeddings, during pretrainig, I randomly sample 
from the CIF embeddings and RoBERTa word embeddings and a varying rate p(step) that is a 
function of the optimization step. I feed these embeddings in at the first layer of the ROBERTa model 
as surrogate word vectors.



5 Experiments 

5.1 Data 

To pretrain the wav2vec-CIF encoder, I use audio and transcript data from the Librispeech English 
100-hour clean dataset [13]. The audio data is 16 kHz mono spoken utterances and can be loaded 

a one-dimensional Pytorch tensors. The text data corresponds to the ground truth transcription of 
the audio data. The output of ROBERTa is decoded into text and compared to these ground-truth 
transcripts. To fine tune on the SQA task, I put together novel dataset. While previous methods 
used Spoken SQuAD [2] to approach this task, this data set gave me significant trouble due to data 
corruption and overall size. As such, I used a combination of the Spoken Wikipedia Corpora [14] 
and the Stanford Question Answering Dataset (SQUAD) [15]. The former contains audio-recordings 

of spoken wikipedia articles with force-aligned transcriptions; the latter contains human generate 
question about Wikipedia articles. Between two, I found 20 overlapping Wikipedia pages containing 
6687 question-answer pairs. I split the audio recording from the Spoken Wikipedia Corpora into 
chunks according the context passages in the SQUAD dataset. 

5.2 Evaluation method 

To evaluate the pretraining of the wav2vec-CIF-BERT model, I computed the overall character error 
rate (CER). The value of this metric is to see how well the CIF transform learns to convert to the 

RoBERTa input embeddings. To evaluate the baseline SQA tasks, I kept track of Fl word scores. For 
the wav2vec-CIF-bert method, I kept track of character overlap (CO) between the extracted and gold 
answers. This is a proxy for the better audio overlapping score (AOS) metric developed recorded 
in [2]. While CO is less accurate than AOS for measuring true answer overlap, the hope is that is a 
reasonable proxy to the F1 score. 

5.3. Experimental details 

5.3.1 Baseline 

To get the model for wav2vec with CTC decoding, I used the Wav2Vec2ForCTC model from 
Huggingface with pretrain extension "facebook/wav2vec2-base-960h". For RoBERTa question 
answering, I used the RobertaForQuestionAnswering model loaded from pretrain extension "roberta- 
base." To get naive metrics for the performance of this cascade pipeline, I did not do any further 
training on either model and froze all of the parameters in each model. 

5.3.2 wav2vec-CIF-BERT Pretraining 

For pretraining, I loaded the Wav2Vec2ForCTC model with pretrain extension "facebook/wav2vec2- 
base-960h" from Huggingface. However, in this version I left weights unfrozen. After the CIF layer, 
there is a fully connected layer to match the hidden layer size of ROBERTa. For the ROBERTa model, 
I used the RobertaModel loaded from pretrain extension "roberta-base" from Huggingface. I froze 
the weights of the ROBERTa model. During training, I used four Tesla V100 GPUs with Distributed 
Data Parallel. I used gradient accumulation to generate batch sizes of 32. I trained for 3 epochs used 
an AdamW optimizer. I used a learning rate scheduler with a 500 step warm up phase until 5e-5 and 
exponential decay after 42000 steps. I decrease the value of p from 0.9 to 0.2 over the first 1000 steps 
and set it constant there afterward. 

5.4 wav2vec-CIF-BERT Question Answering 

For this phase, I froze all the model weights from pretraing and intitialized a new output linear layer 
for the start and end vectors. I used Adam optimization with a learning rate of 5e-5 during training, 
and trained for 3 epochs. 

5.5 Results 

In the baseline, I found the WER to be 9.43%. The corresponding F1 scores were 65.3%. After 
pretraining, the wav2vec-CIF-BERT model produced CER of 153%. The CO measure for question 
answegin using wav2vec-CIF-BERT was 5.6%.



While I was pleasantly surprised by the impressive performance of the ASR-BERT cascading system 
using wav2vec, the model I explored here severely underperformed. Looking into the decoded outputs 
of the BERT decoder shows that the model is effectively producing gibberish. As such, the CER 
overlap score is essentially a function of chance. 

6 Analysis 

Given the impressive WER of wav2vec, I was not surprised by the impressive performance on teh 
question answering task. Many of the mistakes do not properly count as question-answering errors but 
rather pipeline errors. For instance, whenever the answer to the question is a number, the audio data 
for the entry reads out the number but the answer is the numeric version of that number. Therefore, 
it is counted as an error under the guideline of the Fl score when the model goes to the start of the 
word number rather than the numeric number. A better approach would be to use the AOS metric 
to compute time overlap. If the answer were assigned to the same time window, we would know 
whether or not the model actually extracted the correct answer. 

The performance of the novel method proposed here was greatly disapointing. As such, I sought to 
understand why the method performed so poorly here yet did so well in [6]. After going over their 
analysis, I realized the the auxiliary loss function that Yi et al use likely contribute heavily to the 
success of their method. In addition to compute the cross entropy loss from the logits of the BERT 
decoder, they are use CTC loss against the output of the wav2vec module and cross entropy loss 
against the logits of the fully connected layer following the CIF layer. In there loss weighting scheme, 
they actually weight the loss from BERT-wav2vec fusion lower than the other loss functions. As a 
result, the model is not appropriately penalized for poor wav2vec to BERT mapping because it is 
decreasing the other two losses. These other two losses are known to produce good results for ASR: 
wav2vec with CTC is how the original wav2vec 2.0 paper achieve SoTA results. Given this, I wanted 
to see if I could more directly compute the representational power of this form of CIF embedding. 

As such, I made a new model where, instead of trying to maximize the character accuracy of 
BERT decoder using CIF embeddings, I tried to minimize the mean squared error between the CIF 
embeddings and the ground truth ROBERTa word vectors. I found that the model quickly plateaued 
in the MSE loss, showing that this scheme was never going to be sufficient for from transforming 
wav2vec embeddings to BERT embeddings. 

7 Conclusion 

In conclusion, I showed that better ASR and semantic representations significantly improve perfor- 
mance on the SQA task. While I experimented with a novel method for SQA through CIF embedding 
transformations, I showed that this particular implementation is insufficient for the task at hand. 
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