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Abstract 

Natural language models and systems have achieved great success in question 
answering tasks. However, much of the success is being measured on datasets such 
as SQUAD by Rajpurkar and Liang (2016) and RuleTakers by Clark et al. (2020) 
where questions simply require local phrase matching or shallow textual reasoning. 
As a result, the high performance transformers achieved on these tasks cannot 
demonstrate their ability to learn long-range relations and a holistic understanding 
of the text. We propose methods of reducing the attention mechanism of the 
transformer from a fully connected graph to one with sparser edge connections 
to see if it can yield improvements in performance for difficult reasoning tasks, 
generalizability, and learning efficiency. 

1 Introduction 

When it comes to modern natural language processing tasks, it is common practice to leverage 
transformer architectures. In particular, it has been found that its feed-forward repetition of dense 
network and attention layers are enough to surpass previous state of the art LSTM networks, even 
when combining LSTM with attention. Current state of the art methods often involve the pre-training 
of extremely large transformer models such as Bert or GPT and their variants on a huge corpus of 
public data and fine tuning these large models to the task desired. 

The abundance of transformers in pushing performance metrics is of course due to their great ability 
to learn patterns and later apply them in a testing environment. However, this also tends to make 
them liable to learning spurious patterns and heuristics to perform well on data in unintended and 
potentially harmful ways. In particular, if the heuristics learned are not generalizable and the loss 
function and training data not expressive enough to discourage its usage, then the model will be 
a black box waiting to fail on the incorrect test case. It is therefore of utmost importance to learn 
models that are able to generalize well in the first place such that we have robust models to deploy in 
production environments. 

To demonstrate that this is indeed a problem of concern, there are new results suggesting in (McCoy 
et al., 2019) that demonstrate that popular models, including Bert, often learn incorrect heuristics when 
trained on inference tasks. In particular, the original in-domain results demonstrate very respectable 
performance. However, when the authors shift the task to something out of domain (and contrary to 
the heuristic) the performance of these transformer models drop drastically. Furthermore, performance 
on a task which agrees with the learned heuristic performs much better than the in-domain task, 
which solidifies the claim. We expect that natural language understanding (NLU) systems are then 
susceptible to many other robustness issues, and many other problems with generalizability are 
discussed in (Johnson et al., 2017). For example, NLU systems are not robust to adversarial data nor 
shifts in dataset structure. 
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These shortcomings are not only a function of transformer architecture, but also demonstrate a need 
for more robust training data and losses that can better promote learning generalizable patterns. In 
this paper, we discuss methods of improving the transformer attention mechanism and how using 
a synthetic dataset to test the systematic generalization and inductive reasoning capabilities of our 
models is useful to robust learning. 

2 Related work 

There are many impressive results for various question answering tasks in NLP. However, previous 
benchmarks include the Stanford Question Answering Dataset (SQuAD) by Rajpurkar and Liang 
(2016), the Stanford Natural Language Inference (SNLI) corpus by (Bowman et al., 2015), the 

RuleTakers dataset by Clark et al. (2020) and more which mostly focused on factual questions and 
sentence understanding. However, these tasks all fall under a similar problem where the simple 
require either local phrase matching or shallow textual reasoning in order to succeed. Hence, the 
tasks they require models to learn can often be simplified to simpler heuristics that may not generalize 
well. For example, SQUAD can be reduced to a task of matching the context of the question to the 
context of the passage and finding the corresponding phrase and RuleTakers can be reduced to a task 
of matching the context of the question and doing a sentiment analysis. In other words, the model 
may be learning to relying on dataset-specific artifacts instead of learning robust and generalizeable 
ideas. This differs from our approach to generate a synthetic benchmark for systematic generalization 
and inductive reasoning. 

The Compositional Language Understanding and Text-based Relational Reasoning (CLUTRR) suite 
is introduced by Sinha and Hamilton (2018) and highlights many of the baselines for this project. The 
new datasets introduces the task of learning personal relations under various perturbations. These 
involve difficult learning scenarios including inference under various forms and amounts of noise, 
performing different inference length tasks, and performing memory tasks all of which must be 
done in and out of domain. The authors also demonstrate that current NLU models perform poorly 
compared to structured graphical models. With the experimental setup introduced in this paper, it 
was observed that the Graph Attention Network (GAT) model outweighed all NLU models. Within 
the text-based models, BERT-LSTM is the consistent top-performer. We first use their evaluation 
methods as a baseline to build our own custom models to compare. We also use their data generation 
methods as a baseline and extend it to produce other tasks that we wish to evaluate on. 

Shanthamallu et al. (2020) discuss methods of modifying traditional Graph Attention Networks 
(GATs) to be more robust to noise in data. The authors attempt to achieve this by implementing 
regularization terms that penalizes uniformity and encourages sparsity in the graph attentions. This 
method demonstrates notable improvements in accuracy when evaluated on a modified attention 
network that selects and randomizes attention for some number of nodes. This method is a good first 
step towards robustness and we adopt an approach inspired by the authors to encourage a slightly 
different attention behaviour in our own model. 

Hudson and Zitnick (2021) discuss the shortcomings of canonical feed-forward architecture of 

computer vision models from lower level details to higher level features and highlights the difference 
from human processing which also involves a reverse flow of information which consolidates to form 
richer human interpretations of images as compared to neural network models. In order to include this 
bidirectional flow of information in neural network models as well, the authors propose a bipartite 
attention structure between image features and latent variables that allows for interplay of the two to 
inform the attention weights. While this is applied to image processing, a similar analog can be made 
for textual processing since the reverse flow of information can use surrounding context and selective 
attention to better inform reasoning tasks. We adopt a similar methodology as an experimental model 
architecture. 

3 Approach 

3.1. Baselines 

In our research, we utilize pretrained transformer models, namely BERT (Devlin et al., 2018), to 

measure baseline performance. We evaluate our models using the CLUTRR codebase and test for 
generalizability by applying our models to noisy CLUTRR and other variants. While (Devlin et al.,



2018) only train the decoder on top of their BERT model, we will also use a fine-tuned BERT models 
as a more competitive baseline. 

3.2 Approach 

In our approach, we fine-tune BERT models to the reasoning task and enhance them by requiring 
sparsity for the Graph Network implied by the transformer encoding. This can be achieved by 
including regularization terms to the loss function or pruning on pre-trained models and specialized 
version of multiheaded attention. Apart from effect of sparsity, we are also curious about the 
combination result of transformers and pretrained models. 

To start with, regularization is a good way of encouraging attention sparsity, as introduced in 
(Shanthamallu et al., 2020). Specifically, they add penalty terms to the loss function. Storing the 

attention coefficients to K heads in the attention adjacency matrix A* ¢ RN*‘ ,k € 1,K, they 
introduces two regularizing terms 
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which prevents nodes from becoming discordantly influential and 
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which encourages edge sparsity. However, these two regularizations are insufficient for our application 
as the J; regularization is diminished by the specifications of the attention function which requires that 

a |A;;| = 1. Also, the introduction of an /p regularization would result in a stark discontinuity 

of the loss function’s gradient. Therefore, we propose the regularization 
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where we choose a small parameter for , namely js = 0.1 in our initial experiments. 

Here, we consider specialized version of multiheaded attention, where the same node sparsity and 
importances between each of the different heads are enforced. This brings the further benefit of 
applying its sparsity constraint over all attention heads at once, thus requiring that the overall effect 
of the attention head modulates a sparse graph structure. Thus, we use the regularization 

{oe i 
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which provides the further benefit of applying its sparsity constraint over all attention heads at once, 
thus requiring that the overall effect of the attention head modulates a sparse graph structure. 

We use these sparsity restrictions in two ways. In the first, we generate a transformer network that 
applies the penalization term specified in Equation 2 and stick it on top of a standard BERT model. 
This allows the BERT model to incorporate rich relationships between the words while the additional 
transformer layers can model the graph network implied by the logical relationships. In a second 
variant, we prune the BERT model directly by fine-tuning it under the distributional penalization 
scheme from Equation 2. This allows us to incorporate the penalization function more elegantly and 
the words will be focused on their logical counterparts from the start. 

4 Experiments 

4.1 Data 

The main dataset that we will use is the CLUTRR suite which is composed of a set of semi-synthetic 
passages focusing on familial relationship Sinha and Hamilton (2018). The authors generate this



dataset by first gathering fundamental data on named entities and sample phrases from Amazon 
Mechanical Turkers. This simply gives the text corpus more flavor and models realistic text that 
may be found in books or websites such that the model still needs to resolve canonical tasks such 
as co-reference resolution, dependency parsing and named entity recognition on top of learning a 
relationship tree. Then, logical rules governing relationship composition must be added and we can 
begin generating data. 

Generation is done by first initializing a single person node. We can then add other nodes that 
relate directly to the first node to begin a relationship tree. More nodes are recursively added until it 
reaches a desired size after which we can apply transformations. In particular, we construct the graph 
downwards and by using compositional rules and inverse compositional rules we can perturb nodes to 
construct the upper levels and to draw edges between all relations that can be named to form the final 
relationship graph (note that this will no longer be a tree). Then in order to generate a (corpus, query) 
pair, we sample a edge in the graph such that there exists a different path between the nodes and 
construct a story using the sample phrases data and fundamental data and query the relation between 
the nodes connected by the sampled edge. Of course the edge is the final target relation. 

The implementation baseline is provided in https://github.com/facebookresearch/clutrr (2019) and 
does generation specifically on familial relationships. The authors also provide some simple baseline 
data generated from the model which is very simple in nature and only tests simpler reasoning 
capabilities. In order to challenge the baseline models and modified models we propose more, we 
require more challenging data. 

First, CLUTRR is written specifically for familial relations and the generation functions are written 
particularly for this generation task. In order to see if the models generalize to other relationship types 
and not just a unique fit to familial data, we extend CLUTRR to generate some other relationship 
type which we choose to be workplace data. We build off of the familial generation structure and add 
additional workplace data that is generated as a full tree alongside family such that we can now add 
workplace relation queries as well to our training and testing data. 

Next, we also wish to challenge our models to generalize to perform longer inference tasks as well 
as do robust reasoning on noisy text. The CLUTRR API allows us to specify different generation 
procedures of the form x.y. The naming convention here is x denotes a task ID and y denotes the 
inference length of queries in the dataset. In order to test on longer inference tasks, we want to vary 
the length of alternative path required to traverse the edge sampled during generation. Then for any 
task, we generate a training set for smaller inference lengths (i.e. y = 2,3, 4) and tested on inference 
lengths that reach higher (i.e. = 5,6). For robust reasoning, note that once the relationship graph 
is fully built, we can add additional edges for non-relationship information. This allows us to add 
non-essential information to the tasks as a form of noise that will require models to focus on only 
necessary information. We can generate some different forms of noise: no additional noise (x = 1), 
supporting noise (« = 2) where the edges added follow to alternative path between the queried nodes, 
irrelevant noise (x = 3) where the edges added connect to one of the queried nodes, and disconnected 
noise (« = 4) where the edges added no not connect to either of the queried nodes. Finally, we have 
tasks x > 5 are such that the target is in the text corpus and tasks x < 6 are such that the target is not 
in the text corpus. 

4.2 Experimental details 

We generated and tested five models built on top of the https://github.com/koustuvsinha/clutrr 
baselines (2019) CLUTRR baselines evaluation code. These are a standard BERT model with added 

Feed-Forward architecture, BERT with an added transformer structure and 3 versions of BERT 

with added regularized transformers. These 3 models use js = 0.1 and have different \ parameters 
by which we multiply the regularization term when adding it to the loss function, specifically 
A = 0.01, 0.1, 1. For all our regularization models we use the penalization terms defined in Equation 
2 to enforce sparsity across the attention heads. 

For simplicity, we initially tested our models on the pre-generated CLUTRR data sets. In partic- 
ular, we train our models on the pre-generated CLUTRR data that is immediately available for 
download https://drive.google.com/file/d/1SEq.1IV CDDzsBI BhoUQ5pOV H5dkaRoZF/view 
(2019). The training data includes text passages generated using stories involving family relations 
(train 2.2) and supporting facts and testing data involved a slightly different structure of family



relations with irrelevant facts mixed in (test1.3, test 2.3, test 3.3, test 4.3). The task queries are given 

by the names of two individuals (Person,, Person) in the text and the model is asked to output 

the word relating Person, to Person, (i.e. Persong is the son of Person). 

4.3 Results 

4.3.1 Precompiled Data Sets 

Our results are summarized below. Table 1 shows accuracy statistics for different combinations of 
transformer and BERT models on the training and test data precompiled by Sinha and Hamilton 
(2018). What we can see it that fine-tuned BERT models generate much higher accuracy statistics 
than simple pre-trained BERT models with an added transformer structure. This holds for test tasks 
that are the same as the training tasks, but also for other test tasks such as tasks 3.3 and 4.3. Further, 

this is also true for our baseline models, as the fine-tuned BERT models outperform simple pretrained 
BERT by a lot. We can also note that the BERT models that only fine-tune their attention layers tend 
to achieve better accuracy statistics, and that our regularized models are often able to outperform 
their non-regularized variants. Because we can observe a stark difference between added-transformer 
and pruned BERT models, we will focus on the latter in the next result sections. 

Table 1: Model Average Accuracy Table 
Test accuracy over 5 data sets from (https://github.com/koustuvsinha/clutrr baselines, 2019) with 
different levels of noise relations. Training sets are 1.2 and 1.3 

1.2 1.3 23 3.3 4.3 

BERT 0.292 0.393 0.541 0.430 0.516 
BERT with transformer 0.047 0.286 0.361 0.211 0.133 
BERT with regularized transformer, A = 1 0.109 0.250 0.117 0.188 0.172 
BERT with regularized transformer, \=0.1 0.417 0.273 0.339 0.320 0.320 
BERT with regularized transformer, \= 0.01 0.161 0.281 0.219 0.211 0.344 

  

  

BERT fine-tune 0.740 0.771 0.731 0.773 0.766 
BERT fine-tune attention 0.693 0.826 0.836 0.805 0.836 
BERT fine-tune reg., \ = 1 0.677 0.773 0.541 0.695 0.727 
BERT fine-tune attention reg., A = 1 0.724 0.865 0.859 0.812 0.805 
  

4.3.2 Workplace Data 

To test whether for logical reasoning capabilities across data sets, we combined the workplace and 
family relation data sets for both training and testing sets. Accuracy statistics can be found in Table 2. 
As all accuracy statistics except for tasks 4.2 and 5.2, for which we get accuracy rates around 0.8, 
are close to 1, we can conclude that the models are not bound to a single task. Further, we can not 

that our restricted model also works with other versions of the penalization parameter and that an 
increase of the parameter does not lead to a sharp performance decrease. This means that our model 
can also function with stricter attention restrictions. 

Table 2: Model Average Accuracy Table, Robust across environments 
Test accuracy using both the family-relationship and workplace data sets. The models were trained 
on tasks 1.2, 3.2 and 6.2 

  

1.2 Ded 3.2 42 5.2 6.2 7.2 
  

BERT 0.994 0.597 0.872 0.600 0.508 1.00 0.993 
BERT fine-tune 1.000 0.825 1.000 0.730 0.696 1.00 1.000 
BERT fine-tune attention 1.000 0.908 1.000 0.857 0.826 1.00 1.000 

BERT fine-tune reg., 4 = 0.1 1.000 0.720 0.872 0.736 0.495 1.00 1.000 
BERT fine-tune attention reg., X= 0.1 1.000 0.882 1.000 0.865 0.842 1.00 1.000 
BERT fine-tune attention reg... 4\=0.5 1.000 0.872 0.986 0.886 0.766 1.00 1.000 
BERT fine-tune attention reg., A = 1 1.000 0.892 1.000 0.891 0.769 1.00 1.000 
 



4.3.3 Longer relationships 

Logical reasoning models need to be able to reason over longer logical chains. Therefore, Table 3 
provides accuracy statistics for longer test sets for a model trained on tasks 1.2, 1.3 and 1.4. The 
Statistics show that more robust models are better able to correctly predict long relationship solution, 
while the pre-trained BERT and the simple fine-tuned BERT models are inadequate for such tasks. 
Yet, the relatively low accuracy rates for longer tasks, such as 1.6, even for restricted models indicates 
that all models have problems with long reasoning tasks given the training sets. 

Table 3: Model Average Accuracy Table, Long Reasoning capabilities 
Test accuracy for logical chains of different lengths. Training sets are 1.2, 1.3 and 1.4 

1.2 1.3 1.4 1.5 1.6 
  

  
BERT 0.604 0.251 0.220 0.213 0.148 
BERT fine-tune 0.891 0.765 0.469 0.380 0.349 
BERT fine-tune attention 0.823 0.765 0.517 0.425 0.303 

BERT fine-tune reg., A = 0.1 0.891 0.694 0.491 0.378 0.279 
BERT fine-tune attention reg., \=0.1 0.953 0.721 0.486 0.408 0.248 
BERT fine-tune attention reg, \=0.5 0.969 0.793 0.480 0.404 0.271 
BERT fine-tune attention reg., \ = 1 0.969 0.800 0.469 0.404 0.295   

To check whether the models only generated worse accuracy statistics for longer reasoning tasks 
due to inadequate training data, Table 4 provides experiments using longer training data sets. Due 
to the expanded training data, we incorporated test data of reasoning length up to 10. As the table 
shows, expanding the training data length raises the predictive capacity for all models, and especially 
the fine-tuned models are now able to almost always make correct inferences for test sets of up to 
length 10. However, for longer tasks we can observe a sharp performance reduction, though it is less 
pronounced for more robust models. In general, especially the regularized models with \ = 0.1 and 
A = 0.5 are able to achieve a relatively good performance when compared to the other models. 

Table 4: Model Average Accuracy Table, Long Reasoning with longer training data 
Test accuracy over 5 data sets from (https://github.com/koustuvsinha/clutrr baselines, 2019) with 
different levels of noise relations. Training sets are 1.2, 1.3 and 1.4, 1.5 and 1.6 

  

  

12 13 14 ‘%5 16 %17 «+18 «19 1.10 

BERT 0.302 0.257 0.151 0.448 0.538 0.146 0.106 0.154 0.193 
BERT fine-tune 0.984 0.691 0.518 0.990 0.975 0.243 0.362 0.307 0.285 
BERT fine-tune attention 0.984 0.760 0.498 0.990 0.950 0.256 0.263 0.378 0.395 
BERT fine-tune reg., 1 = 0.1 0.984 0.699 0.477 0.979 0.975 0.272 0.276 0.267 0.307 
BERT fine-tune attention reg., \ = 0.1 0.984 0.744 0.425 0.979 0.954 0.313 0.352 0.350 0.391 
BERT fine-tune attention reg., 1 = 0.5 0.984 0.807 0.451 0.990 0.975 0.276 0.387 0.387 0.356 
BERT fine-tune attention reg.,4 = 1 0.984 0.752 0.518 0.990 0.975 0.272 0.273 0.331 0.329 
  

5 Analysis 

To investigate the functional performance of our regularized models, we inspect the attention layers 
of selected models in this section. The purpose of our Distributional regularization scheme is that 
it aims to restrict the attention connections in this layer. As the attention network of a transformer 
can be viewed as a Graph Neural Network, where the tokens a token attends to denote its connected 
nodes in the Graph Network, our penalty function can generate a sparser graph structure. This is 
especially true as the regularization works across the different attention head in a single layer and 
thus restricts the total graph connections symbolized by the attention network. Due to our choice of 
the norm 1, which we have set to js = 0.1, the layer is incentivised to restrict its attention to a small 
number of tokens, as the penalty term discourages a more uniform distribution. 

For the inspection, we choose fine-tuned BERT models trained on the pre-generated data set; in 
particular, we use our model without a penalty term, as well as the models with \ = 0.1 and A = 1 to 
inspect for the effects of different strengths of the regularization. Figures | and 2 depict attention 
layers for 2 sample inputs from the original data sets for the three input models. For the input



sentences, the numbers denote a token used in place of a person (for example, the start of the story in 
Figure | reads "Person 0 and her daughter person | went shopping together"). 

As expected, Figure | shows that indeed with an increasing degree of regularization (with the figures 
progressing from A = 0 to the left to \ = 1 to the right) the attention graph becomes sparser, whilst it 
retains its ability to capture the key information and relationships. Specifically, especially up to A = 1 
for this sentence, the first two versions capture the connection between the name represented by the 1 
token and the relationship word daughter. Further, we can observe that such crucial relationships may 
be less influential for more extreme regularization term if some noise component overshadows the 
relative relationship, as is the case for \ = 1. 
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[SEP] [SEP] [SEP] [SEP] [SEP] [SEP] 

Figure 1: Attention visualization of different degrees of penalties left to right: 4 = 0,0.1,1 

Similarly, Figure 2 visualizes an attention layer for another sentence from the data base. Again, we 
can see that the attention outputs are indeed less dispersed and thus symbolize a more restricted graph 
network. For the token character 1, with increasing \ values it attends more strongly to ’mother’, 
the word that describes its relationship with character 2. Thus, in this case does not only help in 
eliminating - or pruning - non-necessary attention layers, but can also help in identifying correct 
relationships, even for large \ values. 
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[SEP] [SEP] [SEP] [SEP] [SEP] [SEP] 

Figure 2: Attention visualization of different degrees of penalties left to right: 1 = 0,0.1,1 

6 Conclusion 

In this research paper, we investigated the possibility to achieve better reasoning capabilities for 
Natural Language Understating in a reasoning task by using a sparser and more restricted network. 
In particular, we performed our analysis on the CLUTTR data set, which contains statements and



questions about family relationships that require long-term reasoning capabilities. As inferences 
across multiple connections can be difficult, this was established to be a challenging task according 
to prior literature. 

In our work, we extended the CLUTRR data set to a second task by activating its possibility to use 
relationships fro a work environment. This introduces the additional requirement that models need to 
apply reasoning across different environments and thus requires greater generalizability. We have 
further expanded across the state-of-the-art performance established by Sinha and Hamilton (2018) by 
using regularized version of fine-tuned BERT models. Our performance gains are particularly robust 
to the introduction of additional noise variables, such as non-necessary connections. However, while 

the regularized BERT models also increase model performance for long-relation tasks, the increase 
in predictive accuracy dissipates for longer connections. This shows that despite the performance 
improvements, the models are still unable to generally model the ability to conduct logical reasoning. 
This provides an important direction for future research, as models with the ability to perform such 
long-distance reasoning can lead to more reliable NLP and NLU models that take the syntactic 
content of their texts into account. 

Further, we have successfully introduced the distributional regularization attention model, which is 
the first attention model to directly restrict graph connections across attention heads by a penalization 
method. Given the success in traditional Machine Learning, but also its recent re-emergence in 
Deep Learning, regularization techniques can play an important part in the future. As shown, our 
regularization method can restrict the attention graph to a more sparse structure, with the sparsity 
depending on the strength of the regularization. Further, this method allows to prune pre-trained 
models by fine-tuning them under a regularization scheme. This allows to employ less computation 
resources when designing a sparse model, and to design the model for a relatively small training set, 
as in this paper. Yet, more experiments are needed to reveal the full potential of the distributional 
regularization scheme. More experiments should be conducted to identify optimal parameter values 
for yz and A, and their effect on other graph-based attention tasks should be researched. 

Lastly, the researchers have also investigated the possibility of introducing the new Simplex Attention 
model to the NLP literature to design sparse graphs more explicitly. By defining a separate, more 
sparse set used to compute key-value pairs for the attention layer, the Simplex function can design its 
own sparse transformer models and does not require additional regularization schemes. However, 
at this stage the Simplex results were not yet satisfactory, such that it was omitted from the result 
section. 
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