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Abstract

State-of-the-art neural machine translation (NMT) models require large
amounts of compute and storage resources, with some of the smallest NMT
models clocking in at several hundred megabytes. This large size makes it
difficult to host NMT models in resource-constrained environments like edge
and mobile devices, requiring that the user utilize either a stable internet
connection or offline dictionary. The goal of our project is to compress a
pre-trained NMT model as small as possible while minimizing reduction
in translation accuracy. Using a pre-trained Chinese-to-English MarianMT
model, Opus-MT, we tested several size reduction techniques and observed
their impact on memory size, processing speed, and BLEU.

1 Key Information to include

• Mentor: Angelica Sun (asunyz@stanford.edu)

2 Introduction

The goal of our project is to compress a pre-trained neural machine translation (NMT)
model using several candidate techniques, achieving the maximum size reduction possible
while maintaining reasonable performance on BLEU.
While transformer-based language models perform well on NMT tasks, their large size makes
it difficult or impossible to host in resource-constrained environments. This is problematic
for NMT applications since in many cases, those who are unable to speak or interpret a
foreign language may find themselves in situations with access to neither cellular data nor
a human translator.
NMT-enabled edge devices have the potential to provide rapid translation services in
resource-constrained and infrastructure-challenged environments. Combined with speech-
to-text (STT) models, full-suite NMT edge devices could be used as intermediaries, helping
to avoid misunderstandings that could lead to high-profile international incidents between
English-speaking and Chinese-speaking communities. Recent examples include the mass
eviction of African immigrants in Guangzhou, and an oft-repeated tendency for Chinese
dancers to use of blackface in the annual Lunar New Year TV show, in an attempt to
“celebrate Chinese-African ties.”performant. [1] [2] [3]

We selected Chinese-English as our subject pair since Chinese is consistently ranked as one
of the hardest languages for English-native speakers to learn. [4] Our hope is that by investing
in language understanding between these disparate linguistic communities, we can reduce
the frequency of bilateral confusion and culture shock, foster deeper interactions between

Stanford CS224N Natural Language Processing with Deep Learning



speakers, and curb a sharp rise in anti-Chinese (and more broadly, anti-Asian) hate crimes
across English-speaking communities. [5]

3 Related Work

Yan et al provide the most comprehensive exploration of compression techniques for language
modeling. [6] Their solution won the language modeling task of the NeurIPS 2019 MicroNet
Challenge, achieving a 90x parameter efficiency gain and 36x computational efficiency gain
compared to the baseline model, while satisfying a required test perplexity of 35. [7]

Cheng et al provide a survey on model compression and acceleration techniques for deep
neural networks (DNNs) more broadly. [8] This paper focuses on the first group of techniques,
parameter pruning and quantization.
Network pruning sparsifies networks through either iterative pruning, which prunes a weight
if its absolute value is less than a given threshold (either an integer value or a percent), and
global pruning, which is applied to all weights simultaneously. [9]

Finally, Shu and Nakayama introduced embedding-specific compression via codes and code-
books, by casting high-dimensional 32-bit float weights into lower-dimensional integers, with-
out a significant loss in accuracy. They achieved embedding compression rates of up to 98.4%
without sacrificing accuracy in sentiment analysis and machine translation tasks. [10]

4 Approach

We tested our baseline model against a never before-seen test set, then implemented sev-
eral compression techniques for our NMT model Opus-MT, built by University of Helsinki
researchers upon the MarianMT framework.

4.1 Architecture

Opus-MT utilizes a basic encoder-decoder structure with multi-head self attention. Both
the encoder and decoder have 5 layers each, comprised of normalization and linear modules.
This architecture is illustrated in table 2.

4.2 Baselines

Baselines were established by running inference against the WMT17 Chinese-English trans-
lation task. [11] The Opus-MT model was trained on data from the Tatoeba Challenge. [12]

The WMT17 test data had to be preprocessed to extract source text, and Opus-MT was
provided out-of-the-box with code from the Hugging Face Transformers library. [13]

Since PyTorch 1.8 does not yet support CUDA-based quantized models, all inference had
to be run on CPU. This resulted in longer runtimes than usual, but provides an apples-to-
apples comparison between the different methods.

4.3 Pruning

With the notable exception of recent sparse transformer models like the Switch Trans-
former [14], most state-of-the-art transformer models like GPT-3 make use of dense con-
nectivity in their networks. There is some research demonstrating the efficacy of sparse
connectivity in some applications, [15] but we are curious to see how outright elimination
(rather than size reduction) of model weights and activations affect NMT performance with-
out post-training.
We used a vanilla PyTorch implementation for L1 unstructured pruning, which identifies
and removes module elements with the lowest L1-norm, the sum of all magnitudes of vectors
in a given space. Instead of iteratively pruning the lowest X% of connections by layer, we
built a global pruning function that prunes the lowest X% of connections across the entire
model.
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Figure 1: Our Opus-MT model structure.

4.4 Quantization

Quantization is a process that reduces the bits representing a number. Converting a value
represented by float32 to int8 sacrifices precision for storage and speed, achieving up to a 4x
reduction in size for the variable. This is a growing field of research within deep learning,
especially for resource-constrained environments, as most models use float32 for weights and
activations by default. When quantization techniques are applied tensor-wise to layers or
the entire model, developers can achieve significant improvements in model compute and
storage requirements. [6]

Model weights, biases, and layers can all be quantized. Dynamic quantization is the simplest
method that compresses select model layer activations to the specific bitwidth, but not
weights or biases. In this study, we strictly observe the impact of dynamic quantization on
linear activations.

4.5 Embedding Compression

Embedding compression condenses high-dimensional word embeddings into lower-
dimensional quantized codes. Whenever a word is assigned an independent embedding
vector, the number of parameters required to store all embeddings can require a massive
amount of storage space. Our original Marian model utilizes a vocabulary of 65,000 words
in 512 dimensions, requiring over 33M embedding parameters (all in float 32) to store the
vocabulary. While this does not impact performance, since only a few words are pushed
through the model at any time, it does impact storage and memory requirements.
For our experiment, we used the PyTorch implementation of the original neuralcompressor
repo, with some modifications for better generalizability. [16] Neuralcompressor represents
each word w with a code Cw:

Cw = C1
w, C

2
w, ..., C

M
w

Dog = [14, 6, ..., 9]

Dogs = [14, 6, ..., 10]
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Each word contains M codes, and each subcode Ci
w is an integer number in [1, K ]. Words

of similar meaning are expected to have similar codes. In this way, theoretical embedding
compression is achieved by reducing the embedding dimensionality from 512 in our model
to M, in addition to weight quantization by converting weights to integer codes of precision
K.

5 Experiments

5.1 Data

The Opus-MT model was trained on Chinese-English translation data used for the Tatoeba
Translation Challenge. [12] Most of these translations resemble natural human conversa-
tions. Our test set, collected separately, consists of 2,000 Chinese-English translations from
WMT17, which are Chinese-language article headlines translated into English. [17]

5.2 Evaluation Method

Our models are evaluated on file size (in memory), inference speed, and translation accuracy
via BLEU-4. We use SacreBLEU to compute BLEU scores on a per-translation basis. [18]

For our embedding compression, we measured file size, theoretical compression (parameter
dimensions), code length in bits, and drift via mean Euclidean distance. Code length in bits
is measured by Mlog2K.

5.3 Experimental Details

The base model was retrieved out-of-the-box via Hugging Face, with no modifications or
fine-tuning on WMT17. Since PyTorch 1.8 does not support GPU inference for quantized
models, all experiments were run on CPU for apples to apples comparison, specifically a
2.6GHz Intel Core i7-8850H CPU. We used a batch size of 50 on 1,000 translations in the
test set.

5.4 Results

Our initial results demonstrated successful compression on our linear quantized model with
minimal loss in BLEU. For our pruned model, PyTorch does not yet support structured
pruning as usage of sparse tensors is still in beta, meaning that the storage and memory
footprints do not change.

Model Compression Results
Metric Base Pruned Model (2x) Quantized (INT8)
File Size 303.9 MB 303.9 MB* 207.8 MB
Time / Translation 1,101.7ms 9,394.9ms 922.3ms
BLEU 29.56 23.12 28.68

Compression – –* 1.5x
Speedup – 0.12x 1.2x
Accuracy Loss – (21.8%) (3.0%)

Table 1: Since PyTorch 1.8 does not yet support sparse tensors in production, storage and
memory usage remain unchanged, but 50% of all layer tensors are sparsified.
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A global pruning rate of 50% successfully sparsified layers at an average of 50% per layer,
however our implementation failed to avoid a significant loss in accuracy. This halted further
investigations of pruning rates of 4x, 8x, and 16x as originally planned.
Dynamic quantization using did not achieve the expected compression rate of 4x, netting
only 1.5x. Since vanilla PyTorch only quantizes the activations in quantize_dynamic, and
not the original embeddings, this led us to conclude that greater theoretical compression
rates may be achieved by focusing on the embeddings, rather than the layers.
For our embedding compression, we examined two different sets of M x K coding, 32 x 16
and 64 x 8. Stored as binary files, both achieved significant reductions in memory store
with minimal drift in Euclidean distance, indicating most words maintained their semantic
representation despite loss of precision.

Embedding Compression Results
Metric Original 32x16 64x8
File Size 416.2 MB 7.4 MB 7.5 MB
Dimensionality 65,000x512

(FP32)
65,000x32
(INT16)

65,000x64
(INT8)

Code Length 2,560 bits 128 bits 192 bits
Mean Euclidean Distance – 0.378 0.543

Storage Compression – 56.2x 55.5x
Parameter Compression – 32x 32x

Table 2: File size represents embeddings stored in word2vec format.

6 Analysis

6.1 Qualitative Results

Beyond investigating performance enhancements on storage, speed, and accuracy, we were
interested to see if there were identifiable trends in some of the lowest performing transla-
tions. Table 3 contains a sample of the worst translations from each model.
Immediately, it is clear that our pruning method resulted in harsh repetition loops that do
not seem to be reflected in the base or quantized models. We investigate this further in
6.2.3.

6.2 Impacts to Accuracy

6.2.1 Translation Length

We investigated how the accuracy of our NMT model is related to the length of the Chinese
input. Since Chinese does not use whitespace to separate words, word boundaries are
considered ambiguous, which provides an additional challenge when assessing the length of
a source text. We use Chinese text segmentation techniques provided by the jieba package
to split the string into distinct characters groupings that correspond to a given Chinese
dictionary. [19]

Running jieba.cut on 这是一个激动人心的时刻 yields the following segmentation:

这是, 一个, 激动人心, 的, 时刻
‘This is’, ‘an’, ‘exciting’, possessive indicator, ‘moment’
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Selected Inaccurate Translations
Base Pruned (2x) Quantized (INT8)

Source 然而，即使是按照普京
先生一向内敛的标准
来看，普京也只是浅浅
微笑，几乎未流露出热
情之意。

拜尔斯因此跻身像
迈克尔-菲尔普斯 (
Michael Phelps ) 一
样的“几十年一遇运动
员”的行列，他们将各
自领域的体育项目提
升到新高度

据《明镜周刊》的报道，
酒店很快对所有指控
予以澄清，声称一切都
是“疏忽”并且向朗兹
曼表示“歉意”。

Reference But Mr Putin’s smile
looked thin and he was
hardly oozing warmth
even by his own re-
strained standards.

The achievement puts
her in the same league
as once-in-a-generation
athletes like Michael
Phelps who have taken
their sports to new
heights.

The hotel itself was
quick to brush off any
accusations, calling
what happened an
"oversight" and "apolo-
gizing" to Lanzmann,
Der Spiegel reports.

Target However, even in the
light of the standard
that Mr. Putin has
always held, Putin is
merely a light smile
with little enthusiasm.

By the way, by the
way,【...】by the way, in
the way of the Michael-
Phelps, by the way, by
the way, by the way,
【...】the way, of the

way, that of the sports
in the various fields of
which they have been,
【...】, the way, the way,
【...】the things of the

way, the way,【...】

According to the Sun-
glasses Weekly, the ho-
tel quickly clarified all
the charges, claiming
that everything was
“neglect”and express-

ing“apologies”to Lun-
zman.

BLEU 1.963 0.243 2.533

Table 3: 【...】represent repetitive n-grams that have been omitted for readability.

We then bucketed jieba segment lengths into bins of 5 words each to reduce volatility in
regression plots.

Figure 2: Histogram of jieba word segments for all source tests in test set.

However, none of the three models exhibited any statistically significant reduction in transla-
tion accuracy with longer source texts. While the data distribution resembles a polynomial
relationship, confidence intervals are too wide to draw a statistically significant conclusion.
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Figure 3: Linear regression plots for jieba word segmentation bins vs. BLEU-4 score.

6.2.2 Entity Recognition

The next item we wanted to investigate was the frequency of named entities in the source
text. Our qualitative assessment highlighted several bad translation examples which con-
tained named entities cast as strange or literal translations (“Der Spiegel”→“Sunglasses
Weekly”).

We used spacy to identify and tally named entities in our English reference translations. [20]

We then plotted a regression chart to examine the impact of entity count on translation
accuracy. However, no statistically significant relationship exists between the number of
detected entities and translation accuracy.

Figure 4: Histogram for number of entities recognized in test set reference translations.

Figure 5: Histogram for number of entities recognized in human-reference translations in
test set.
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6.2.3 Repetition

Repetitive utterances in translated texts may be a function of inefficient or inelegant model
compression techniques. Notably, our worst performing translations from the pruned model
had oft-repeated ngrams which were not present in the base or quantized translations for
the same text.
To examine this, we extracted all 1, 2, 3, and 4-grams from the reference translations,
calculated their frequency distribution, then determined the mean n-gram frequency for
that translation. We then repeated the process for our target translations. The delta
between reference and target mean n-gram frequencies represents our repetition score.
Our pruned model had a significantly higher repetition score than either the base or quan-
tized model.

Figure 6: Boxplot for repetition score (target ngram repetition - reference ngram repetition).

Compared to either model, the variance in the pruned model was incredibly wide, indicating
a significant loss in translation consistency.

7 Conclusion and Future Work

Our intent was to explore two methods of model compression for NMT-specific applications.
Given the high compression rates achieved via embedding compression, we believe a suc-
cessful implementation of embedding compression and linear quantization should comprise
the majority of NMT-specific model compression gains.
While our quantization efforts were limited to 8 bit integers, we would like to explore 4 bit
and as low as 2 bit storage for each subcode in our embedding codebook. Based on the
performance of the linear quantization model, we expect to implement this with minimal
loss to accuracy.
Conversely, pruning efforts proved that while NMT models can sacrifice precision without
drastically impacting accuracy (even without post-training), outright sparsification without
post-training has severe impacts to accuracy. In short, weights cannot simply be deactivated
without consequence.
Finally, we intend to explore exporting our compressed model to edge-friendly formats
via ONNX and deepC, [21] [22] to deploy alongside a Chinese STT model. [23] Ultimately, if
deployed on an edge device with an integrated microphone, this combination can create a low-
cost portable Chinese-English translator without the need for a stable internet connection.
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