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Abstract

This project aims at achieving a higher performance on the SQuAD 2.0 challenge.
Our methods include data preprocessing, improving the ALBERT model, output
postprocessing, and ensembling. First, we use data augmentation to increase the
size of the training set. Then, we implement several improvements on ALBERT,
including incorporating a question answerability classification component, adding
extra layers, and tuning the hyperparameters. Finally, after ensembling these
models, we use named entity recognition to award the predicted answers with types
of words corresponding to the question with a higher probability. Our proposed
method reaches the EM/F1 scores of 79.949/82.584 on the test PCE-division
leaderboard.

1 Introduction

Question answering is among the most popular tasks in natural language processing since it is applied
in a variety of real-life scenarios. While human readers can usually reach fairly high accuracy when
they extract information from paragraphs, it is much more difficult for machine comprehension
models to achieve the same effect on profoundly challenging and interesting datasets like SQuAD 2.0
that poses a wide variety questions with some of them being unanswerable in the first place.
Recently, several variations of ALBERT have become the state-of-the-art models on SQuAD 2.0.
Inspired major trend is attempting to boost the accuracy of answerability prediction by using
verifiers,later we train another ALBERT model as an answerability classifier and take its result into
account in our base ALBERT model. Meanwhile, by observing the prediction results on the Explore
SQuAD 2.0 page, we propose a unique answer postprocessing mechanism based on named entity
recognition, in the hope of outperforming the regular ALBERT model.

2 Related Work

• BERT: BERT (Bidirectional Encoder Representations from Transformers) has led to a
series of breakthroughs in language representation learning. BERT utilizes the bidirectional
training of Transformer, a popular attention model, to train on large corpus. It uses the
novel technique of Masked LM (MLM) to achieve this bidirectional training.[1] Shallow
output layers can then be fine-tuned on top of the powerful pre-trained weights for different
downstream tasks.[2]

• ALBERT: While BERT uses a very large network to achieve state-of-the-art performances
in many downstream tasks, researchers begin to realize that model size cannot be simply
increased boundlessly. It has been shown that problems like hardware memory limitations,
training speed, and worsened performance would arise as the model grow larger.
A more advanced ALBERT model addresses foregoing scalability problem of BERT from
two major parameter reduction techniques: factorized parameter reduction and cross-layer
parameter sharing. Additionally, it also proposes a self-supervised loss for sentence-order
prediction (SOP), which improves upon the BERT version of determining inter-sentence
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coherence. Overall, the new ALBERT model improves BERT performance while using
much fewer parameters.[3]

• Limitation of two papers: The BERT and ALBERT papers did not explore more complex
output layer structure for their downstream tasks. Instead, they stick with one simple linear
output layer. Furthermore, different data preprocessing and postprocessing techniques are
not explored in papers, which can be useful depending on the specific dataset.

3 Approach

3.1 Baseline

The baselines for this projects are the default BiDAF [4] and the BERT base model. For the base
BERT model, we are using exactly same set-up and procedures as our main approach for ALBERT
below.

3.2 ALBERT base model

Our main approach is based on ALBERT. We imported the pre-trained ALBERT weights and fine-
tuned them on top of the question-answering dataset SQuAD 2.0 using a structure similar to the
original BERT paper[2]. Specifically, we would concatenate the question (embedded A) and passage
(embedded B) together and use them one single input. These two input would be separated by the
‘[SEP]’ token as what specified in the BERT paper. There would be two additional vectors, S ∈ RH

and E ∈ RH , being outputted to produce the probability of a word being start or end of the answer
span. For example, for a word Ti, the probability that it is the start of a answer is its dot product
with start vector S followed by the softmax across all other words in the passage: P(Ti as the start) =
eS·Ti

Σje
S·Tj

. Similarly, the probability that Ti is the end is P(Ti as the end) = eE·Ti

Σje
E·Tj

.
The final answer prediction is defined as the text span where the sum of start and end probability is
the highest. Moreover, in terms of the “no-answer” scenario added to the SQuAD 2.0, the prediction
is when it makes S · [CLS] + E · [CLS] is the highest, where “[CLS]” is the start token added by
BERT convention with no specific meaning.
For the loss function, we use cross-entropy loss with mean reduction to take the average inside each
batch: loss = −logpstart(i)− logpend(j), where i and j in the equation represent the true start and
end locations, and pstart(i) and pend(j) represent the predicted start and end probability in token i
and j, respectively.
Our ALBERT implementation was adapted from Huggingface library example run_SQuAD.py [5].

3.3 Binary Classification

Besides the typical question-answering structure mentioned above, we also added an additional
ALBERT-based binary classifier to predict whether a question is answerable or not based on the
context. [3] A binary classification task is much easier than the standard question-answering task,
and therefore should have higher accuracy identifying “no answer” cases. We used this model as an
additional reference to the regular answer span detection task to increase the overall accuracy.
The model we used is the original ALBERT base model with an additional output layer producing 2
logits, one representing is_impossible = FALSE (0), the other one is representing is_impossible =
TRUE (1).
As the original BERT model described, we used the final hidden state of the first “[CLS]” token of
each Context+Question input as the aggregate sequence representation for our binary classification
task. [2] A linear layer with a dropout layer is attached after “[CLS]” token’s last hidden state
to transform it to be size of 2. The loss function for this model is also a cross entropy loss with
formulas and same mean reduction method is used to take loss average inside each batches: loss =
−yi · log(ŷi)− (1− yi) · log(1− ŷi).
In the prediction phase, the output of binary classification (probability of predicting “no answer”)
helps decide whether to force the question answering model to provide its best answer or simply
force the result to be “no answer”. We explored various combination of threshold of forcing to have
answer and no answer. Based on Huggingface, we implemented the classification training, evaluation
and ensemble codes.
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3.4 Additional Linear Output Layers

The proposed question answering model structure for the original ALBERT model only used one
linear output linear to transform each token’s large final hidden states into the size of 2. Since we
observed that directly drops hidden size 768 (base model) or 1024 (large model) to 2 seemed a bit
too abrupt, we implemented 4 more linear output layers at the end to gradually reduce size into 2.
Specifically, the structure is as follows: linear layer with output size 768, linear layer with output size
768, linear layer with output size 384, linear layer with output size 192, and the final linear layer with
output size 2.

3.5 Additional Highway Output Layers with Dropout

The performance of modified 5 linear output layers is not ideal. The possible reason would be
over-fitting and gradient vanishing due to the deeper neural network structure. To resolve possible
gradient vanishing problem and preserve more information from lower levels, we implemented 3
highway structures to replace the original plain 5 linear layers structure. Additionally, to reduce the
the possible over-fitting, we introduced 3 drop-out layers in between each highway structure.
The detailed structure flow is as follows: a highway unit with output size 768, a drop-out layer with
probability 0.1, a highway unit with output size 768, a drop-out layer with probability 0.1, a highway
unit with output size 768, a drop-out layer with probability 0.1, and a final linear layer with output
size 2.
For each Highway unit, the output is obtained by combining the projection with gate: xoutput =
xgate � xproj + (1 − xgate) � xinput where xgate and xproj are calculated as xproj =
ReLU(Wprojxinput), xgate = σ(Wgatexinput).

3.6 Data Augmentation (DA)

Inspired by a past CS 224N paper [6], we used Easy Data Augmentation (EDA) [7] to generate
similar expressions to the original contexts in the training set so that our model can be trained on
an expanded dataset. We adapted the EDA code so that it replaces a certain percentage of terms in
the “context” part of the training set and guarantees that the length of each word remains unchanged
and words that appear in corresponding answers don’t get replaced. Then, we append this changed
dataset to the original training set so that we can train on a larger amount of data.

3.7 Named Entity Recognition (NER)

By browsing the SQuAD 2.0 Data Explorer, we realized that different types of questions would expect
grammatically different types of answers. Thus, we proposed this original method to postprocess
answer candidates so that ones that contain words from the expected categories would have a better
chance to selected ultimately. For example, if a question contains “where”, we will assign a higher
probability to answers that contain location information. We used two different NER identification
systems, CoreNLP [8] and NeuroNER [9], because they can identify different types of words. We
categorized questions and mapped the word types to question types as shown in Table 1.

QuestionType Keywords Count NeuroNER CoreNLP

Person ‘Who’ 638 person person, title
Time ‘When’ 441 - date, duration, set, time
Date ‘On what date’ 3 - date

Time (other) ‘what decade/century/year’ 140 - date, duration, set, time
Location ‘Where’ 233 location location, country, city

City ‘Which/W(w)hat city’ 14 location location, city
State ‘Which/W(w)hat state’ 8 location location, state_or_province

Country ‘Which/W(w)hat country’ 38 location nationality, location, country
Percentage ‘percent(age)’ 28 - number, percent
Duration ‘How long’ 33 - date, duration, number, set
Money ‘How much’ 48 - number, money
Count ‘How many’ 246 - number

Table 1: Named Entity Recognition question/answer types, using NeuroNER and CoreNLP.
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3.8 Ensemble

We ensembled our models by taking the “votes” from all models with decent performance. Each
model will output a file that contains its top candidates along with the corresponding probability. We
sum up all of the probabilities for each possible answer string with different assigned weight. The
answer with highest vote would be our final prediction.

4 Experiments

4.1 Data

We use default project data-set provided by the instructors, which is adapted from the official SQuAD
dataset 2.0 (Training Set v2.0: 40 MB; Dev Set v2.0: 2 MB; Test Set v2.0: 1 MB)[10].

4.2 Evaluation method

The evaluation method for question-answering task is EM and F1 scores, while for the binary
classification of question answerability, we use Accuracy, Precision, Recall, and F1 score.

4.3 Experimental details

• Preprocessing: Data Augmentation
Adapted from EDA, we replaced words in the contexts of the training set, excluding those
that appeared in corresponding answers or words vital to the sentence meaning or structure
(such as “your” or “under”), with a probability of 0.2. Each word is replaced with a random
synonym generated by WordNet that has the same length as the original word, so that
the starting/ending indices remain unchanged. We preserved the letter cases, symbols,
and numbers. Finally, we concatenated it with the original training set and train on this
twice-as-large dataset.

• BiDAF
Same as the default configurations, details see reference.[4]

• BERT and ALBERT
We experimented with linear output layers, highway and dropout layers, and binary answer-
ability classification with different learning rate and number of epochs, as shown in Table 2.

• Postprocessing: Named Entity Recognition
We ran CoreNLP and NeuroNER on the dev and test contexts to map each word to its type.
Then, for all questions in the corresponding type, we tested several ways to reward the
more-likely answers, including adding or multiplying the probabilities of selected candidates.

• Ensembling
We assigned different weights to the output probabilities of all models with relatively
satisfying scores to generate the final output.

Model name pre-trained model batch size learning rate epochs

BERT base bert-base-cased 6 3e-5 2
ALBERT base albert-base-v2 6 3e-5 2

ALBERT base + 5 output layers albert-base-v2 6 3e-5 2
ALBERT base + highway layers albert-base-v2 6 3e-5 3

ALBERT base classifier 1 albert-base-v2 6 3e-5 2
ALBERT base classifier 2 albert-base-v2 6 3e-5 3
ALBERT base classifier 3 albert-base-v2 6 1e-5 3
ALBERT large classifier albert-large-v2 3 5e-6 3

ALBERT base + DA (ans changed) albert-base-v2 6 3e-5 3
ALBERT base + DA (ans unchanged) albert-base-v2 6 3e-5 3

Table 2: BERT and ALBERT experiments all have max seq length 384 and doc stride 128.

4



4.4 Results

4.4.1 Binary Classification

With our first classifier model, we obtained accuracy of 0.60, which is relatively low for a binary
classification task. After investigating different checkpoints, we observed that till the very late of
the training, the model still tends to predict “has answer” around 70% of the time. This indicates an
unconverged training because the training data split is in a similar range (66% “has answer”).

ALBERT variations overall accuracy precision (for 1) recall (for 1) F1 (for 1)

1© 2 epochs + lr 3e-5 0.60 0.74 0.36 0.48
2© 3 epochs + lr 3e-5 0.49 0.59 0.07 0.12
3© 3 epochs + lr 1e-5 0.82 0.85 0.80 0.83
4© 3 epochs + lr 5e-6 0.86 0.87 0.85 0.86

In our second classification model, we increased the training epochs to 3, yet the accuracy drops to
0.49. The oscillated training loss plot and flat evaluation accuracy plot indicate the model isn’t really
learning (see below figure, (a) and (b)). Suspecting that the original learning rate of 3e-5 was was
tuned for question answering task instead of classification, we reduced it to 1e-5 and obtained much
better convergence (see below figure, (c) and (d)).

(a) (b)

(c) (d)

We then further train the classifier on ALBERT large model to achieve better result. The batch size is
reduce to 3 due to limited GPU memory and the learning rate is also further reduce to be 5e-6 since
the previous training loss is still a bit oscillating. When the probability of “no answer” is high, we
force the result as “no answer” and when the probability of “no answer” is low, we try to force the
question-answering model to output its best possible answer. We performed grid search on different
threshold and obtained results as shown in Table 3.
The best no answer threshold we found is 0.99. However, no matter what the has answer threshold
is, it only degrades the result. This is possibly because that after the classifier forces has answer
prediction, the model still has to generate a correct answer span. This is a much harder task than
simply outputting no answer.
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Table 3: Regular ALBERT models and classifiers with and without answer thresholds.
Model name no ans threshold has ans threshold DEV EM DEV F1

ALBERT base + classifier base 0.7 - 79.48 82.18
ALBERT base + classifier base 0.9 - 79.48 82.35
ALBERT base + classifier base 0.99 - 79.58 82.35
ALBERT base + classifier base 0.995 - 79.47 82.27
ALBERT base + classifier base 0.7 0.01 78.63 81.51
ALBERT base + classifier base 0.7 0.001 79.48 82.18
ALBERT base + classifier base 0.7 0.0025 79.32 82.05
ALBERT base + classifier large 0.99 - 80.56 83.32

4.4.2 ALBERT with various additional output layers

Implementing ALBERT with additional 5 linear output layers received degraded EM and F1 scores
of 78.35 and 81.52. To resolve possible over-fitting and gradient vanishing due to the deeper neural
network structure, we implemented another variation with 3 repeated highway + dropout structures
and received EM/F1 scores of 78.30 and 81.21. From the evaluation graph below, we observed that
the F1 score never outperformed the regular ALBERT. One possible reason is that ALBERT is already
deep enough to learn the QA task and extra output layers only makes its learning harder.

(a) (b)

4.4.3 Data Preprocessing

While we expected to boost the performance with data augmentation, it turns out that it actually
harms the scores. Comparing to EM/F1 scores of the fine-tuned ALBERT base model, the scores
of the same model trained on a twice-as-large training set decreases significantly, no matter if we
preserved all words that appeared in answers from being replaced or not. Since replacing 10% rather
than 20% of the words slightly improved the performance, one possible reason is that a relatively
large change might have distorted the original context structure.

Data augmentation (DA) usage DEV EM DEV F1

Without DA 79.06 81.91
With 20% DA (changed answer words) 76.01 79.60

With 20% DA (preserved answer words) 75.77 79.09
With 10% DA (changed answer words) 76.43 79.88

4.4.4 Answer Postprocessing

While using CoreNLP and multiplying the probability by 1.5 or adding 0.2 on top of the probability
achieved relatively good results, the EM/F1 scores were still slightly lower than the regular ensembled
result. Since NeuroNER had much fewer tags available, the highest scores it achived after abandoning
the ‘MISC’ tag and adding 0.2 to each probability was still lower than CoreNLP’s.
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NER MISC Calculation DEV EM DEV F1

Neither - - 80.158 82.612
NeuroNER Yes probability × 1.5 if any match 79.615 82.325
NeuroNER Yes probability × 2 if any match 79.631 82.328
NeuroNER No probability × 2 if any match 79.648 82.358
NeuroNER No probability +0.2 if any match 79.664 82.375
CoreNLP - probability × 1.5 if any match 80.092 82.578
CoreNLP - probability × 2 if any match 79.631 82.360
CoreNLP - probability +0.2 if any match 80.059 82.510
CoreNLP - probability ×1.5 for each match, ×0.9 for each non-match 79.681 82.334

both No probability +0.2 if any match 79.664 82.375

4.4.5 Ensembling

The first ensemble of 5 different models boosted the EM by 1.096 and F1 by 0.702 compared with
the highest performance individually. After adding the ALBERT with highway model, the ensemble
performance again being boosted by +0.592 (EM) and +0.429 (F1). This is very interesting because
ALBERT with highway itself actually performs worse than other models. A possible reason is that
ALBERT with highway has a radically different structure with the rest, which might fix mistakes that
other more regular ALBERT models make.

Ensemble Method DEV EM DEV F1

BERT base + ALBERT base + ALBERT 5 layers
+ ALBERT base with base classifier + 0.5 BiDAF 80.158 82.612
BERT base + ALBERT base + ALBERT 5 layers

+ ALBERT base with base classifier + 0.5 BiDAF + ALBERT highway 80.750 83.042
BERT base + ALBERT base + ALBERT 5 layers
+ ALBERT base with base classifier + 0.5 BiDAF

+ ALBERT highway + ALBERT with augmentation 1© 80.833 83.117
BERT base + ALBERT base + ALBERT 5 layers

+ ALBERT base with base classifier + 0.2 BiDAF + 1.2 ALBERT highway
+ ALBERT with augmentation 1© + ALBERT with augmentation 2© 81.013 83.255

BERT base + ALBERT base + ALBERT 5 layers
+ ALBERT base with base classifier + 0.7 BiDAF + 1.8 ALBERT highway
+ ALBERT with augmentation 1© + 2.5 ALBERT base with large classifier 81.063 83.499

4.4.6 Summary

On test PCE leaderboard, our best ensemble model reached the scores of EM: 79.949 F1: 82.584.
Our ensemble scores are shown in the table below. The binary classifier boosted the accuracy of
question answerability and a combination of ALBERT with highway layers and ALBERT with linear
output layers enhanced the scores even more. While data augmentation and named entity recognition
did not work as well as we expected, we still see some potential to adjust the exact implementation of
these methods.

Model name DEV EM DEV F1

BiDAF 57.86 61.30
BERT base 73.86 77.24

ALBERT base 79.06 81.91
ALBERT base 5 output layers 78.35 81.52
ALBERT base highway layers 78.30 81.21
best ALBERT base + classifier 79.58 82.35

best ALBERT base + classifier large 80.56 83.32
best ALBERT base with augmentation 76.01 79.60

best ensemble 81.063 83.499
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5 Analysis

We decided to qualitatively evaluate our model by examining two false predictions that correspond to
two features we implemented.

• Context (trimmed): A term used originally in derision, Huguenot has unclear origins.
Various hypotheses have been promoted.
• Question: The term Huguenot was originally meant to confer?
• Expected answer: “derision", “derision", “derision"; Prediction: No Answer

The binary classifier we added to the regular ALBERT boost the accuracy of ruling “no answer"
questions as “no answer", yet it is unable to handle answerable questions very well. The original
meaning of Hugeunot is hinted in a short phrase “used originally in derision", which is very brief and
can be read in other ways, making it likely to be considered a “no answer" question.

• Context (trimmed): [...] the Ottoman Empire was a powerful multinational, multilingual
empire controlling much of Southeast Europe, Western Asia, the Caucasus, North Africa,
and the Horn of Africa.

• Question: The Ottoman empire controlled territory on three continents, Africa, Asia and
which other?
• Expected answer: “Europe", “Europe", “Europe"; Prediction: “Southeast Europe, Western

Asia, the Caucasus,"

While the question asks about another continent, the predicted answer includes several specific
regions because our model fails to tell what kind of word is expected. Though our NER postprocess-
ing sometimes harms accuracy, this problem might be solved by implementing fine-grained NER
techniques that specify the expected answer types.

6 Conclusion

The model we proposed, visualized by the following graph, consists of three parts. First, we added
output layers for ALBERT, including linear and highway-dropout so that the large final hidden
size would not be dropped too immediately. Secondly, we implemented an ALBERT-based binary
answerability classification to increase the accuracy of predicting “No Answer". Thirdly, we trained
our model on a larger dataset after using data augmentation to replace words in the training contexts
with their synonyms. Fourthly, we proposed the unique idea of using named entity recognition
to postprocess the candidate answers so that answers containing the correct types of words are
assigned higher chance. Finally, we improved ALBERT performance on SQuAD 2.0 significantly by
ensembling these models.
Later on, we plan to adjust the percentage of changed words for data augmentation and experiment
with different question/keyword types for named entity recognition. Moreover, we plan to boost the
prediction accuracy of answerable questions by tuning the way we combine the results of the regular
ALBERT and the binary classifier.
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