
Extended QANet on SQuAD 2.0
GRADING OPTION 3

Stanford CS224N Default Project - Final Project Report

Guillaume Nervo
ICME

Stanford University
gnervo@stanford.edu

Pablo Veyrat
Management Science and Engineering

Stanford University
pveyrat@stanford.edu

Abstract

In this project, we built question answering systems for the Stanford Question
Answering Dataset (SQuAD) 2.0. We explored two end-to-end models: the baseline
BiDAF network ([1]), and QANet ([2]), a non-recurrent model fully based on
convolution and self-attention. Two major goals were accomplished. Firstly, we
improved the baseline BiDAF model by introducing character embeddings, and
a linear ReLU activation in the fusion function of the attention layer. Secondly,
we re-implemented the QANet model from scratch and successfully explored
some variations on its architecture. Our best BiDAF/QANet single model achieved
62.46/64.54 EM and 65.76/68.43 F1 score on the development set respectively. We
also built an ensemble model which achieved EM = 69.16 and F1 = 71.77
on the development set, and EM = 66.32 and F1 = 68.94 on the test set.

1 Introduction

Reading comprehension is the ability to process text and understand its meaning. In this project, we
will be performing question answering, which is one of the most studied machine comprehension
task. Recently a variety of neural architectures achieved near-human performance in open domain
question answering tasks. These recent advances are broadly of two types: (1) Pre-trained Contextual
Embeddings (PCE) based methods such as ELMo [3] and Bert [4] and (2) Non-PCE methods. The
former offers more of an “off-the-shelf” module that could be employed for specific tasks such as
question answering, when the latter, even though not being the state of the art (SoTA) any longer (as
of March 2020), offers more scope for creativity and opportunities for deep learning practitioners to
explore different techniques and develop intuitions behind them.

In this work, we have experimented with some of the most successful non-PCE approaches to question
answering like the QANet model, with the overall goal to achieve the highest performance possible
on the non-PCE SQuAD 2.0 leaderboard. QANet, which was built by Yu et al. in [2] for speed and
efficiency, achieved state-of-the performance on SQuAD 1.0. However, suitability of the architecture
for the non-answerability setting has not been systematically evaluated to our knowledge. Our major
focus in this project has been implementing the QANet model, understanding its limitations against
the SQuAD 2.0 dataset and investigating methods to augment its architecture.

We have also worked on the baseline BiDAF model ([1]), and showed that we could improve
performance by adding a character embedding layer and by exploring a new fusion function in the
bi-directional attention layer. We have ensembled our BiDAF models with our top-performing QANet
models. These models being significantly diverse, the ensemble have yielded better results than the
single models. Last, we have analyzed the outputs of our models which helped us better understand
how they work, in which situations some models produce relevant or irrelevant outputs, which layers
are most important, and how we could further improve them in a future work.

Stanford CS224N Natural Language Processing with Deep Learning



2 Related Work

Prior to QANet, major question answering systems primarily contained either of two key ingredients
(1) recurrent units such as LSTM for capturing sequential input and (2) exploiting attention mechanism
for capturing long-term interactions.

The BiDAF [1] model which employs both the techniques, is a hierarchical multi-stage end-to-end
network which takes inputs of different granularity (character, word and phrase) to obtain a query-
aware context representation using memory-less context-to-query (C2Q) and query-to-context (Q2C)
attention. This representation can then be used for different final tasks, such as question answering.
This model performed particularly well for its time, as an ensemble model based around BiDAF was
able to outperform all previous approaches at the time the paper was published back in 2016. Note
that this paper targets SQuAD 1.0, which only contains answerable questions and therefore constitutes
an easier task than what we are trying to perform here on SQuAD 2.0. One major disadvantage of
this model is that it is heavily reliant on RNNs, and therefore difficult to parallelize. This in turn
means that the model is slow to train: it does not take enough advantage of parallel computing.

To get rid of this non-recurrent architecture and achieve a speedup, one-and-a-half years later, the
QANet [2] was published. It borrowed neat ideas from NMT proposed in the Transformer [5]
architecture: encode the question and context separately using a non-recurrent, therefore faster,
encoder. This encoder uses convolution (which models the local features) and self-attention (which
processes global interactions) as building blocks. The authors estimated that QANet was 4.3 times
faster than BiDAF to train, and 7.0 times faster to evaluate, which meant they had a massive advantage
as they could use data augmentation techniques to increase the number of training examples available,
and thereby process more training data than the BiDAF model. QANet achieved state-of-the-art
performance when it was released, significantly outperforming the previous best model on the official
leaderboard. Still, the QANet authors did not compare variations of their model with close and
relevant types of model structures, with for example unshared weights for the stacks of encoders
of the model encoder layer, or with different answer pointers in the output layer. In this paper, we
investigate these unexplored variations on QANet while tuning the model to SQuAD 2.0.

3 Approach

The first thing we did was improve on the BiDAF model that was already implemented in the starter
code for the default final project by adding character embeddings to it, like what had been done in
homework 5 for the neural machine translation task using character embeddings.

The second step of our work was implementing from scratch a QANet model following the details
given by Yu et al. in [2] and adapting it to the SQuAD 2.0 framework. Implementing such a model
has been made easier by the fact that it shares many similar components with the BiDAF model. We
thus managed to write all the components specific to this model ourselves, except for the positional
encoding sub-layer for which we had to inspire ourselves from several implementations found on
Github (mainly this one and this one).

Like most high-performing question answering models, the QANet model consists of five layers, as
shown in Figure 7 in the appendix. The input embedding layer is very similar to the one used in
our BiDAF implementation. It consists of the GloVe embeddings of each word concatenated with the
output of a convolutional layer that processes the embeddings of each character that makes up a word
up to a maximum length of 16 characters per word. The only difference is that instead of using the
pre-trained character embeddings of dimension 64, we represent each character as a trainable vector
of dimension 200.

After the embedding layer, the input is then passed through the embedding encoder layer where we
first add positional encoding, since otherwise the convolutional structure of the network would lose
track of that information. The rest of this block consists of several depthwise separable convolutions
as introduced in [6] (which Yu et al. argue is more memory-efficient and generalizes better than
convolutions), followed by a multi-head self-attention layer (adapted from [5]), and finally a feed-
forward layer. This structure is the encoding block shown in Figure 7 in the Appendix.

This layer is followed by a context-query attention layer. It is the same as the one used by
the BiDAF model, so we did not re-implement it ourselves. The attention output is expressed as

2

https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py
https://github.com/kaushalshetty/Positional-Encoding/blob/master/Positional_encoding.ipynb


gi = [ci;ai; ci ◦ ai; ci ◦ bi] ∈ R8d where d is the hidden dimension, c1, ..., cN the context input,
a1, ...aN and b1, ..., bN the context-to-query and query-to-context attention. In [1], more than the
simple concatenation, the authors explain that it would be possible to use a linear layer followed by a
ReLU activation as a fusion function between the different outputs of the attention mechanism. For
BiDAF, we thus also explored the following variation in the fusion function:

g = ReLU(W lin[ci;ai; ci ◦ ai; ci ◦ bi] + blin)

The output of the attention layer is then fed through the model encoder layer, which consists of
several encoder blocks chained together. The number of convolutions in each block can be different
from the number we had in the encoder blocks of the embedding encoder layer. This step is repeated
three times to get three output matrices M0, M1, M2, and the weights are shared between each
repetition.

Finally, the matrices M0, M1, M2 are fed through the output layer. The strategy to predict the
answer span is the same as what is used in the BiDAF. More specifically, in this case, the probabilities
of starting and ending position are modeled as follows:

pstart = softmax(W1[M0,M1]), pend = softmax(W2[M0,M2])

One thing to note is that the probability distribution of the end index is computed independently
of the probability distribution of the start index. In one of our experiments, we thus decided to
try conditioning the distribution of the end pointer pend by the distribution of the start pointer
pstart. Our idea was that it could help the network better learn how the end of an answer span
relates to its beginning. To create a tangible link between the two distributions, we explored the
following possibility involving a linear layer: pend = softmax(W3[W2[M0,M2],pstart]), with
W2 ∈M1,2×hidden−size

4 Experiments

4.1 Dataset

The dataset that we are using is a slightly modified version of the SQuAD 2.0 dataset [7], where our
training data is identical, but our dev and test sets are drawn from the official dev data. The data
consists of (context, question, answer) triples. Each context is drawn from Wikipedia articles, and
the answer is either "No answer", or a span from the context. In the train set, approximately 33%
of the questions are unanswerable, while in the dev set, only 52% are due to a range of linguistic
phenomena such as negation, antonyms, entity swapping, etc.

While the dataset provides high quality questions and answers, many of them tend to be of wh- type.
Figure 1 shows the distribution of these question types. Since pure Transformer-based architectures
have been known not to do well on very long-range dependencies [5], we also take note in Figure 1
of the distribution of the context length, answer length and answer start index for the dev and the
train set.

Figure 1: Dataset Distributions

3



We initially wanted to incorporate features from [8] in our models to better take into account such
dependencies. Nonetheless, since 95% of the training contexts are of length less than 250, we
understood that it would not significantly improve our models.

Curiously, when analyzing some of the contexts and questions individually, we also noted some
errors in the ground truth in the dev set, especially with paragraphs dealing with highly technical
topics. For example, for the question: What is the force equivalent of torque compared to angular
momentum?, none of the human annotators provided the correct answer: momentum.

4.2 Evaluation method

For our evaluation, we used the same metrics as the official SQuAD leaderboard, which are Exact
Match (EM) and F1 scores. EM measures whether the answer span matches exactly with the ground
truth answer. F1 scores is computed as the harmonic mean of precision and recall, where precision is
calculated as the number of correct words divided by the length of the predicted answer, and recall
is calculated as the number of correct words divided by the length of the ground truth answer. For
evaluation, the predicted answer is measured against 3 human answers for each question, and the
highest score among the three is recorded.

4.3 Experimental details

4.3.1 Baseline Model Improvement

After adding the character embeddings to the baseline BiDAF model, we trained the model with the
default parameters of the starter code. Among other things, we used 30 epochs, a learning rate of
0.001, a dropout rate of 0.2, a batch size of 64, and a hidden size of 100. To be able to compare
outcomes, we did not change these parameters when we trained the BiDAF model with a different
fusion function in the attention layer.

4.3.2 QANet Re-Implementation

For our implementation of the QANet model, we initially wanted to exactly reproduce the parameters
described by Yu et al. in [2], with for example a hidden size of 128, 8 heads in the self-attention layer,
7 encoder blocks in the model encoder layer, with each containing 2 convolutions.

Yet, we had issues with running out of memory on the GPU. To combat this, we were forced to reduce
the number of parameters of our model. We started to train one really small QANet model. Then,
we tried to get closer to the original model and train bigger models, with when possible more heads
in the self-attention mechanisms, more encoder blocks in the model encoder layer and an increased
hidden size. We moved from an Azure NV6 to an Azure NV12 virtual machine to train our biggest
model. Figure 2 contains all the details about the structure of the models we trained.

Model QANet (1) QANet (2) QANet (3)
Batch Size 32 32 16
Hidden Dimensionality 64 128 128
Heads in the Self-Attention Mechanisms 3 4 8
Encoder Blocks in the Embedding Encoder Layer 1 1 1
Depthwise Separable Convolutions in each block 3 4 4
Encoder Blocks in the Model Encoder Layer 4 3 7
Depthwise Separable Convolutions in each block 3 2 2

Figure 2: Parameters of the different QANet models trained

As for the other hyperparameters, we strictly followed the instructions of the paper. We used an Adam
optimizer, with β1 = 0.8, β2 = 0.999, ε = 10−7, a learning rate of 0.001, a dropout rate of 0.01, an
exponential moving average on all trainable variables with a decay rate of 0.999. For regularization,
we also used L2 weight decay with λ = 3× 10−7 on all trainable variables. Additionally, we had
dropout layers on word (p = 0.1) and character embeddings (p = 0.05). Last, in accordance with
what is done in [2], we adopted the stochastic depth method (layer dropout) introduced in [9] between
every layer in the encoding blocks where layer l has survival probability pl = 1− l

L (1− pL) and
where L is the last layer and pL = 0.9. We trained each model for 30 epochs.

4



Though convolution and self-attention layers used by QANet model are better suited for GPU parallel
computing than recurrent layers (left-to-right or right-to-left) in the BIDAF model, we did not observe
any speed-up: it took us more than 20 hours to train each of our QANet models, the bigger models
taking more time than the smaller ones. This can be explained because our self-implemented QANet
models involve significantly more parameters to be learned than the BiDAF model, and also because
of our potentially suboptimal implementation. As seen in Figure 1, here the context and queries are
generally short in length (tens or hundreds): we could maybe see the benefit of parallel computing
with longer sequences.

4.3.3 QANet Exploration

After testing different model sizes for our QANet implementation and trying to understand the effect
of the number of heads and of encoder blocks, we explored some variations around the baseline
architecture. We did not only see this as a way to further our understanding of how QANet works,
but we also believed that it could increase the diversity of the predictions of our different models
and thus improve the performance of our ensembles on the test set. We based our investigations on
some of the weaknesses of the QANet model we observed and on choices made by Yu et al. in [2]
for which we did not get the rationale. To better understand the exact effect of each modification we
made to the QANet structure, we trained a model for each of the variations detailed below with the
same hyperparameters as QANet (1).

Modified Output Layer. As detailed in the Approach part, we first tried improving the pointer
mechanism of QANet’s output layer by adding a linear layer between pstart and pend.

Unshared Weights. We also tested the effect of not sharing weights for the three stacks of encoder
blocks in the model encoder layer. We thought of this as a way to get higher level representations of
the inputs that the model would learn how to balance with lower level representations in its output
layer. While it is judicious to use the same encoder for the question and the context when trying to
understand how to represent natural language, it did not seem to us that logical to apply the same
transformation three times after the attention layer because there is no real language behind this
representation: the network could learn more from three different transformations.

Data Augmentation. Even though we did not observe any significant speed-up when training our
QANet models compared with BiDAF, we still tried to investigate the effect of data augmentation
on model performance. In [10], Raffel et al. indeed explain that in NLP, most improvements
(unfortunately) seem to come from even more expensive models and more data. To augment data, we
started to follow the idea introduced by Yu et al. in [2] of using back-translation. The idea is to use
two translation models (one translation model from English to German and another translation model
from German to English) to obtain paraphrases of texts; and then to append to the training data pairs
of back-translated questions and their associated back-translated context. For a given question, when
modifying a context, contrary to what is done by Yu et al., we only back-translated the sentences of
the context that were not involved in any of the three potential answers given. The huge advantage of
this approach is to avoid having to find back the answer in the produced paraphrase, which in the
paper could lead to errors and mislead the model.

We used the neural machine translation model using a Transformer architecture ([5]) implemented
by the fairseq team of Facebook AI available here for free. However, with this model, it took us
approximately 20 seconds to back-translate each context. We would have needed more than four days
of machine time to back-translate all the contexts and the questions once. Given the time constraints,
we were unfortunately not able to find a way to perform this back-translation faster and thus to train a
model with augmented data.

4.3.4 Model Ensembling

To increase model performance, we used all our different trained models to create an ensemble.
Several approaches were investigated.

We first tried averaging the vectors pstart and pend predicted by our different models before they are
fed to the function discretize that predicts the answer span when testing. We then experimented
with weighted averaging, where we chose the weights manually according to the scores obtained on
the development set. Another idea has been to select for a given question the answer predicted by the
model that was the most certain of its prediction, e.g. for which pstart(imodel) · pend(jmodel) was

5

https://pytorch.org/hub/pytorch_fairseq_translation/


the highest among all models. Last, we tried majority voting directly on the CSV files: if a majority
of models agreed on an answer, we picked this answer. We biased our majority voting mechanism to
break ties using the predictions of the model with the highest F1-score.

4.4 Results

Model F1 EM AvNA
Baseline BiDAF 59.73 55.92 66.27
BiDAF + Char. Embeddings 62.92 59.60 68.93
BiDAF + Char. Embeddings + Fusion Function 65.76 62.46 71.27
QANet (1) 66.04 62.73 72.59
QANet (2) 68.43 64.54 74.44
QANet (3) 68.43 64.91 74.50
QANet (1) + Modified Output Layer 68.22 64.70 73.60
QANet (1) + Unshared Weights 66.87 63.25 73.65
Ensemble (Weighted Average) 70.49 67.72 75.05
Ensemble (Max Prediction) 57.55 53.96 65.01
Ensemble (Majority Voting) 71.77 69.16 76.41

Figure 3: Comparison of models’ performances on the dev set

Figure 3 summarize the results we achieved from testing our models on the dev set. Majority voting
gave us the best F1 score on the dev set. With max prediction we did not get satisfactory results at all.
As of the time of writing, with a F1 score of 68.937 and an EM score of 66.323, we occupy the
1st place of the non-PCE test leaderboard. The differences in development and test scores could
be attributed to slight differences in data distribution, and to the fact that we chose how to ensemble
our models by looking at their scores on the dev set.

Overall, our QANet models performed better than the improved BiDAF models. This is consistent
with what was observed on public SQuAD leaderboards. Since we have never trained two models
with only one hyperparameter differing between both, we cannot from these results isolate the ceteris
paribus effect of adding one head in the self-attention mechanism or one encoder block in the model
encoder layer, and thus definitively conclude about the optimal trade-off model size/performance
for QANet. Still, we manage to observe here that the batch size and hidden dimensionality play an
essential role in a model’s performance.

Besides, we can note that, as expected, the BiDAF model with a different fusion function got better
results than the baseline one with just character embeddings: the network better learns how context
and query relate to each other after the attention layer, which is useful when predicting answers.

Our modified models also improved over the QANet (1) model they are based on. For the unshared
weights, one reason is that we get richer and higher level representations, which when mixed with
lower level representations can account for more accurate predictions. As for the modified output
layer, we believe that a reason for this improvement may have to do with the network better learning
to correctly point the expected answer span.

Still, we should not forget that one major reason for these improvements is that most of them are
bigger models with an extended descriptive power, involving more parameters to be learned. This
may make these models more prone to overfitting in some situations. What we observed with our
modified models is that when training, they tended to learn faster (20 epochs to converge for the
model with unshared weights and 12 for the BiDAF with a different fusion function to compare with
the 30 epochs it took to train the respective original versions of these models), but to overfit a little
bit more, with the loss starting to increase after slightly less epochs (see Figure 8 in the Appendix).
Our experiment with QANet (3) getting a F1 score almost equal to QANet (2) however proves that
bigger models are not necessarily correlated with increased performance.

6



5 Analysis

5.1 Quantitative Error Analysis

Figure 4 shows the error decomposition of our top-performing model on the dev set, the ensemble
model obtained with majority voting. Around 23.6% of errors are derived from Answer vs. No
Answer prediction (AvNA). Interestingly, there is a significantly higher error rate of predicting
unanswerable questions as answerable than predicting answerable questions as unanswerable. It is
probably caused by the discrepancy in the ratio of answerable vs. unanswerable questions in the
Train vs. Dev set.

Prediction / Truth Answer No Answer
Answer 37.2% 12.9%

No Answer 10.7% 39.2%

Figure 4: Error Decomposition on the Dev Set

When both the prediction and the truth are "Answer", 24.2% of the time, there is an error and
the model fails to correctly point to the right answer. Among these errors in match, 54.9% are
positional errors, where the prediction is totally off position, and 45.1% are boundary errors where
the prediction shows overlap. Besides partial overlap, we also count in boundary errors the cases
where the prediction is included in the answer and where the prediction includes unrelated words (till
15 in some examples). Figure 5 focuses on such errors in match.

Figure 5: Key Statistics about Best Model’s Predictions vs. Truth

For the few long expected expected answer lengths present in the dev set, the model tends to predict
too short answers. Yet, as for the vast-majority (84%) of the answerable questions the expected
answer length is comprised between 1 and 4 words, our model tends overall to predict an answer with
a length close to the one of the expected answer. The second plot in the middle shows that most of
the time, the model predicts the correct start pointer. This is consistent with the fact that errors in
match happen only 24.2% when truth and prediction agree on "Answer".

Finally, the last plot on the right also illustrates that when it comes to errors in match, there are more
positional errors than boundary error. It thus highlights that there is still future work to be done to
improve even more the prediction metrics with advanced pointer mechanisms (such as using attention
in the pointer generator like in [11]). Our experiment to modify the output layer was a first attempt in
this direction.

To better understand how our model concretely works, it is also crucial to analyze its performance on
different types of questions (Figure 6).

Type Overall What Who How When Where Which Why Other
Count 5951 3567 627 571 455 256 214 86 65

F1 71.77 65.20 67.66 64.17 73.14 63.10 69.82 57.43 62.21
EM 69.16 61.80 65.69 60.17 72.06 58.00 65.754 48.83 58.90

AvNA 76.41 70.90 71.36 69.65 77.60 71.20 77.17 66.28 66.67

Figure 6: Query Types and Performance

7



We observe that the model performs best in answering "When", since the answers may involve
numbers which are easier to retrieve. Where the model gets its worst performances is when answering
"Why" questions. This was expected as these questions require some logical reasoning other than
query-context matching. For each individual category, we do not observe significant performance
difference when the interrogative words are placed in the start of the sentence or inside of the sentence.

Since our majority vote is biased towards top-performing QANet models, similar error patterns are
found in our QANet models. When comparing the performances of our models on the different types
of questions, we observe that overall, better models perform better than other models on all types
of questions. Interestingly, we observe that F1 = 64.9 for QANet (2), F1 = 58.5 for BiDAF with
Char. Embeddings, F1 = 61.5 for QANet (1) on "Why": QANet models particularly outperform
on "Why" and "How" questions BiDAF models as well as QANet models with less heads in their
self-attention mechanisms, indicating that self-attention is more effective in logical reasoning.

5.2 Qualitative Error Analysis

For this part, since the individual results for each question of the ensemble model are hardly inter-
pretable in terms of being correlated with the model structure, we focus on our QANet (2) model.
In Figure 9, we examine in more details some of the incorrect answers given by the model. The
ground truth spans were put in bold in the table. We categorize the model’s errors by a deficiency in a
comprehension skill, using the skills introduced in [12].

These examples highlight the fact that our model is subject to some really common errors made by
question answering deep learning models. It is not good enough yet in co-reference, inference, spatial
temporal relations, as well as in basic paraphrasing.

The first example for instance shows that even though we use multi-head attention, our model is still
not capturing enough of the global context, but rather relying too heavily on the local context, as the
predicted answer is closer in the context to an occurrence of the word "congress" than the expected
answer. More generally, in presence of multiple prolific entries, we observe that the model seems to
discard lots of relevant context information, and focus on the phrases that are most similar in structure
to the question. For example, although it performs especially well on "Who" and "When" questions,
our model tends to fail when more than one viable answer to these questions appears.

One potential way to improve our QANet models could then be placing relatively more emphasis on
self-attention (more heads) than on convolutions (less encoder blocks). Not only would it help the
model better learn global dependencies, but as seen above, it could also improve the model’s ability
to perform logical reasoning. As for the other skills our model lacks, like co-reference, we could
think of adapting ideas from state-of-the art models for each of these skills (like from [13]) to our
QANet model. Using pretrained contextual embeddings, or adding other additional features to our
input vectors like named entity types might also be ways to improve our models’ responses to these
issues.

6 Conclusion

In this project, we implemented, evaluated and analyzed several end-to-end deep learning models to
perform reading comprehension problems on the SQuAD 2.0 dataset. This gave us the opportunity
to gain hands-on experience on implementing deep learning architectures from scratch. We first
experimented with the baseline BiDAF model, and improved its performance by modifying its
embedding and attention layers. Secondly, we re-implemented the QANet model, which achieved
higher performance compared to the BiDAF model. We then tested several modifications around
QANet baseline structure which in their turn also increased performance.

Overall, our experiments and analysis demonstrated the power of attention mechanisms (bi-directional
attention and self-attention) in deep learning models for question-answering systems. Our ensemble
model indeed achieved the first place (when writing) on the non-PCE test leaderboard, with EM =
66.32 and F1 = 68.94. Future work such as performing the data augmentation as initially desired,
introducing additional features to the input vectors or pre-trained contextual embedding, as well as
attention in the output pointer layer, may further promote the model performance. Given that we
faced memory issues on the GPUs we were working on which prevented us from training the models
we wanted, we could also look for ways to improve the memory efficiency of our implementation.

8



7 Acknowledgements

We would like to thank the CS224N course instructors and course assistants for implementing the
baseline model and providing guidance in project development, and Microsoft Azure for GPU service
and support.

8 Appendix

Figure 7: The overall QANet model and its encoder block from the paper by Yu et al [2]

9



Figure 8: Evolution of the F1 score and the Loss during the training of some of our models

Shortened Context Question Prediction Skill-Deficiency

The goal of the congress was to formalize a unified front in trade and negotiations with

various Indians, since allegiance of the various tribes and nations was seen to be pivotal

in the success in the war that was unfolding. The plan that the delegates agreed to was

never ratified by the colonial legislatures nor approved of by the crown. Nevertheless,

the format of the congress and many specifics of the plan became the prototype for

confederation during the War of Independence.

What was the importance of

the congress?

to formalize a unified

front in trade and nego-

tiations with various In-

dians

Inference

In England, the period of Norman architecture immediately succeeds that of the Anglo-

Saxon and precedes the Early Gothic.

What architecture type came

before Norman in England?

Spatio-Temporal

Relations

Bethencourt took the title of King of the Canary Islands, as vassal to Henry III of Castile.

In 1418, Jean’s nephew Maciot de Bethencourt sold the rights to the islands to Enrique

Pérez de Guzmán, 2nd Count de Niebla.

Who bought the rights? Logical

Reasoning

The change of control in Florida also prompted most of its Spanish Catholic popula-

tion to leave. Most went to Cuba, including the entire governmental records from St.

Augustine, although some Christianized Yamasee were resettled to the coast of Mexico.

Where did many Spanish

Catholic move after British

takeover in Florida?

Co-Reference

Figure 9: Examples of Errors in Predictions of Answerable Questions

References

[1] Ali Farhadi Min Joon Seo, Aniruddha Kembhavi and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. 2016.

10



[2] Minh-Thang Luong Rui Zhao Kai Chen Mohammad Norouzi Quoc V. Le Adams Wei Yu,
David Dohan. Qanet: Combining local convolution with global self-attention for reading
comprehension. 2018.

[3] Mohit Iyyer Matt Gardner Christopher Clark Kenton Lee Luke Zettlemoyer Matthew E. Peters,
Mark Neumann. Deep contextualized word representations. 2017.

[4] Kenton Lee Kristina Toutanova Jacob Devlin, Ming-Wei Chang. Pre-training of deep bidirec-
tional transformers for language understanding. 2018.

[5] Niki Parmar Jakob Uszkoreit Llion Jones Aidan N. Gomez Lukasz Kaiser Illia Polosukhin
Ashish Vaswani, Noam Shazeer. Attention is all you need. 2017.

[6] François Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357, 2016.

[7] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Association for Computational Linguistics (ACL), 2018.

[8] Yiming Yang Jaime G. Carbonell Quoc V. Le Zihang Dai, Zhilin Yang and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. 2019.

[9] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. CoRR, abs/1603.09382, 2016.

[10] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. 2019.

[11] Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural
language decathlon: Multitask learning as question answering. 2018.

[12] Saku Sugawara, Yusuke Kido, Hikaru Yokono, and Akiko Aizawa. Evaluation metrics for
machine reading comprehension: Prerequisite skills and readability. pages 806–817, July 2017.

[13] Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. End-to-end neural coreference
resolution. CoRR, abs/1707.07045, 2017.

11


	Introduction
	Related Work
	Approach
	Experiments
	Dataset
	Evaluation method
	Experimental details
	Baseline Model Improvement
	QANet Re-Implementation
	QANet Exploration
	Model Ensembling

	Results

	Analysis
	Quantitative Error Analysis
	Qualitative Error Analysis

	Conclusion
	Acknowledgements
	Appendix

