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Abstract

12 This project explores input-dependent hidden-to-hidden transitions for RNNs
with the goal of developing robust language models for natural language and the
m-bounded Dyck-k language. Our contributions are two-fold: (1) a special purpose
RNN with input dependent transitions that allows the hidden state to function as a
LIFO-queue to predict the closing bracket for the m-bounded Dyck-k language
and (2) a novel extension of mLSTM [1] to capture more complex input-dependent
behavior by using the insights from modelling the Dyck language. We further
evaluate variations of our models on character and word level modelling tasks and
present various qualitative and quantitative findings.

1 Key Information to include

• Mentor: John Hewitt

2 Introduction

Language modelling is the art of predicting the probability of occurrence of a token (character
or word) in a particular sequence. Over the course of advancement in language modelling, many
different forms of language models have emerged - like the n-gram language model, window-based
neural language model, RNNs, LSTMs and GRUs. Although each of these models are significantly
different from each other and overcome the shortcomings faced by the previous version of state-of-
the-art model, the fundamental principle behind their architectures is consistent. Language models
accomplish their goal of predicting the next token of a sequence by conditioning on a window of n
previously occurring tokens. The size of the window, however, could range from only a subset of the
previously occurring sequence to the entire previous sequence.

Recurrent Neural Networks (RNNs) are one such category of language models which make use of the
entire previous sequence of tokens to predict the next token. RNNs are powerful density estimators
which can capture long contexts to make predictions. The two main parameters of an RNN are : (1)
the input token (xt) which is fed into the model at each time step t of the sequence and (2) the hidden
state vector (ht) which summarizes the past inputs. The recursive nature of RNN comes into play
while updating the hidden state vector ht using a non-linear combination of the current input xt and
the previous hidden state vector ht−1 as

ht = σ(W (hh)ht−1 +W (hx)xt)) (1)

where W (hh) and W (hx) are the weight matrices corresponding to the hidden-to-hidden transition
and input-to-hidden transition respectively.
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The hidden state vector ht for each time step t is multiplied by a weight matrix W (S) and run through
a softmax over the corpus to predict the probability distribution over the next sequence element (ŷt):

ŷt = softmax(W (S)ht) (2)

RNNs have been known to suffer from the vanishing gradient problem while training long sequences
[2], but advances such as long short-term memory architecture [3] which incorporate a gating
mechanism to selectively remember/forget the historical sequence information.

In this project, our primary goal is to investigate the hidden-to-hidden transition weight matrix
(W (hh)) as specified in Eq. 1 by making it input-dependent. Input-dependent hidden-to-hidden
transition weight makes the RNNs more robust against making mistakes when an unexpected input is
encountered. It also makes the RNN less likely to be trapped in a bad numerical state for making
future predictions as the hidden state now depends on the input of each time-step t [1]. Input-
dependent transitions also capture complex input-dependent behavior which makes the models more
expressive and robust to surprising inputs. This increased robustness also allows the learning to
occur in equivalent, if not lesser number epochs and parameters and results in better performance
as shown through our experiments. That being said, input dependent transitions add significantly to
the complexity and number of parameters of the model as now, instead of having a single hidden-to-
hidden weight matrix (Whh), we have one at each time step. This is seen in previous approaches like
the tensor RNN [1] which contains a separately learned transition matrix (Whh) for each input (xt).

We further bisect our goal of using input-dependent hidden-to-hidden transitions for modelling
two different variants of language - Natural language dataset from the Penn Tree Bank [4] and
Context-free m-bounded Dyck-k language [5]. For the m-bounded Dyck-k language we propose
a special purpose RNN called the Dyck-RNN whose hidden state acts as a stack whose push and
pop behavior is facilitated by two static weight matrices (W1 and W2). Dyck-RNN helps in our task
of predicting the correct closing bracket given an incomplete sequence of parentheses. We further
leverage the learning and intuition of using input dependent matrix choice formulation for the Dyck
language to introduce a novel architecture for modelling Natural Language called Multi-Matrix Long
Short-Term Memory (mmLSTM). mmLSTM is an extension of the Multiplicative Long Short-Term
Memory architecture (mLSTM) [1] which is a shared-parameter approximation to tensor RNN and
uses a factorized hidden-to-hidden transition matrix. In mmLSTM, instead of having a separate
transition matrix (Whh) for each input, a set of matrices (W1..i) is shared among the inputs. Further,
input-dependent weighted average of these matrices is taken to build the hidden-to-hidden weight
matrix (Whh).

Further, we extensively evaluate our two novel architectures on their respective language datasets
(Dyck and Penn Tree Bank). Our experimental setup introduces the evaluation metrics for both the
architectures and later delves into the details of comparing mmLSTM for character and word-level
language modelling tasks against well-established baselines. We also evaluate Dyck-RNN and several
natural language models for predicting the correct closing bracket. We further conduct extensive
qualitative analysis of our model and publish our findings.

The rest of the paper is organized as follows: In Section 3 we discuss the methods and findings
of several related literature. Section 4 discusses our proposed architectures in detail and our main
empirical intuitions. In section 5 we discuss our data, experimental setup, experimental metrics and
results in detail followed by an extensive qualitative analysis in Section 6. We further conclude and
provide future directions in Section 7.

3 Related Work

In our project, we are proposing two novel architectures and so, in this section, we would be discussing
some recent literature revolving around both of them. In [6], the authors have introduced a novel RNN
variant (mRNN) that uses multiplicative connections to allow the current input token to determine
the hidden-to-hidden weight matrix. mRNN was able to surpass the performance of the (then)
state-of-the-art model model for character-level language modelling and was able to generate text that
exhibited a significant amount of interesting and high-level linguistic structure. However, although
mRNNs have improved significantly over vanilla RNNs for character-level language modelling tasks,
they fall short against the most popular LSTM architectures [7]. This is because the standard RNN
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units in an mRNN suffer from the vanishing gradient problem and suffer from the difficulty of
retaining long-term sequence context.

An improvement over the mRNN architecture emerged in the form of multiplicative LSTM for
Sequence Modelling (mLSTM) [1]. mLSTM combines the vanilla Long Short Term Memory
architecture with Multiplicative RNNs (mRNNs) and is powered by the ability to have a different
recurrent transition function for each input of the training sample, just like mRNNs. The main
contribution of the mLSTM architecture is to combine the flexible input-dependent transitions of
mRNNs with the long time lag and information control of LSTMs. This would make mLSTMs more
robust to surprising inputs while also preserving the desirable information flow control properties
of vanilla LSTMs. One of the evident drawbacks of the mLSTM architecture is that it has not
been evaluated on word-level language modelling tasks as they have solely looked at character level
modelling in the evaluations. Also, it would be worthwhile to try out non-linear input dependent
transition functions - like using a neural network based Whh representation depending on the input
token.

In [8] the authors propose a simple structural design called ’multiplicative integration’ which uses
hadamard product instead of addition while combining the contributions from input and hidden units.
The result of this modification changes the RNN from first order to second order [9]. The effect
of multiplication results in a gating type structure and allows potential for greater expressiveness
without an increase in the number of parameters. Multiplicative Integration can be integrated into
many popular RNN models and achieves state-of-the-art performance on 11 different datasets of
varying sizes and scales. Multiplicative integration drives the intuition of how having two or more
instances of multiplicative matrices can serve as a gating mechanism and add more expressiveness in
the model.

Coming onto the context-free grammars (CGGs), RNNs have been used to learn context-free gram-
mars through the generalized Dyck language. In [10], the authors explore the use of attention
mechanisms within the seq2seq framework to learn the Dyck language. The attention mechanism
provides some improvement regarding the generalizability of the models with respect to the depth
of recursion but still cannot completely generalize over the recursion depth. However, they perform
better than other models on the closing bracket tagging task - a task which we evaluate Dyck-RNN
on. in [5], the authors introduce m-bounded Dyck-k, a family of formal languages characterized
by a hierarchical structure and bounded memory requirements and demonstrate that LSTMs can
effectively model such a hierarchical language by turning a part of its hidden state into a stack.

4 Approach

This section provides details about the three novel architectures that we have developed - Dyck-RNN,
mmRNN and mmLSTM. Note that mmLSTM is an extension of mmRNN and both have same core
architecture. We also discuss some of the baselines architectures which we use to compare our models
against.

4.1 Baselines

We compare the performance of mmRNN and mmLSTM against some well-established baselines
which don’t have input-dependent hidden-to-hidden transitions - like Vanilla RNN and Vanilla LSTM
[3]. Among the set of models which do have input-dependent hidden-to-hidden transitions, we pick
mRNN [6] and mLSTM [1] architectures explained in Section 3 as our baselines. We compare our
models against these baselines for character and word-level language modelling tasks on the PTB
dataset. For Dyck language modelling, we don’t have any well-established architectures where the
hidden state acts like a stack. Hence, we train our set of natural language models over the m-bounded
Dyck-2 language language and evaluate their performance for the correct closing bracket prediction
task. All the baseline models have been implemented from scratch in PyTorch.

4.2 Dyck-RNN

Dyck-RNN is a special purpose RNN whose hidden state acts as a stack by using two matrices W1

and W2 with 1’s on the subdiagonal and superdiagonal respectively and 0’s everywhere else. W1,
when multiplied by the hidden state shifts the elements down by 1 whereas multiplying by W2 shifts
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the elements up by 1. Each parenthesis is embedded into a 1-dimensional space and these embeddings
are non-trainable. A sigmoid (gating) function is applied to the linearly scaled input embedding as in
Eq. 3. This gate (g(t)) controls whether to perform the push operation or the pop operation i.e. it
chooses between W1 and W2. Here Wproj ∈ Rinput embed size×1, g(t) ∈ R, W1 ∈ Rhidden size×hidden size,
W1 ∈ Rhidden size×hidden size.

g(t) = sigmoid(Wprojxt) (3)

Whh(t) = g(t) ×W1 + (1− g(t))×W2 (4)

h(t) = Whh(t)h(t−1) + g(t) ×Whxx(t) (5)

The hidden state at each timestep t is calculated as in Eq. 5. Note that we do not apply a non-linear
transformation to the hidden state at each timestep. Finally, after the entire input sequence has been
passed through Dyck-RNN, we inspect the top element of the stack (last hidden state vector t = n),
apply an affine transformation and pass it through a softmax function to get a probability distribution
over all k closing brackets. The bracket with the highest softmax probability is the predicted closing
bracket and we backpropagate the cross-entropy loss. We predict all the closing brackets during train
and test time through this approach.

4.3 Multi Matrix RNN

Inspired by the input dependent matrix choice formulation in Dyck-RNN, we propose the following
natural language model which we dub Multi matrix RNN, or mmRNN. In mmRNN, we have
W ∈ R4×hidden size×hidden size which is a 3-way tensor consisting of 4 choice matrices of dimension
Rhidden size×hidden size. The ideology is similar to that of Dyck-RNN where we have two push and pop
matrices W1 and W2. We ran our experiments with different number of choice matrices and arrived
at the conclusion of having 4 choice matrices through empirical analysis. We then construct a key
vector vkey ∈ R4 that is initialized to give equal weight to all the 4 choice matrices in tensor W . At
each time step, vkey is updated to be a linear combination of the concatenation of key vector and
hidden state vector of the previous time step (t− 1) and input embedding of the current time step t.
We then take a weighted average of all the choice matrices in W through the choice vector vkey as
shown in Eq. 7. The hidden state vector for each time step t is then calculated as shown in Eq. 8 Here,
W proj ∈ R4×(4+hidden size+input embed size). We also implemented multi-layer versions of mmRNNs
where the input to subsequent layers is the hidden state of the previous layers.

vkey(t) = softmax(W proj [vkey(t−1);h(t−1);x(t)]) (6)

Whh(t) =

4∑
i=1

vkey(t)[i]×W [i] (7)

h(t) = tanh(Whh(t)h(t−1) +Whxx(t)) (8)

For all the natural language models described above, we pass the hidden state at each timestep through
a softmax to produce the predictions. We use teacher-forcing to train these networks.

4.4 Multi Matrix LSTM

Multi Matrix LSTM or mmLSTM is a hybrid architecture that combines the matrix choice foru-
mulation of mmRNN with the gating framework of LSTMs. The core architecture is the same,
however, we introduce three gates - input gate i, forget gate f and output gate o that have recurrent
and feed-forward connections just like vanilla LSTMs. The difference is that the matrices controlling
the transitions for input, forget and output gates are themselves input dependent. The equations
governing mmLSTMs can be found below. We also implemented multi-layer versions of mmLSTMs
where the input to subsequent layers is the hidden state of the previous layers.
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vkeyĉ
(t) = softmax(W proj

ĉ [vkeyĉ
(t−1);h(t−1);x(t)]) (9)

Whh
ĉ

(t) =

4∑
j=1

vkeyĉ
(t)[j]×Wĉ[j] (10)
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(t)[j]×Wi[j] (12)

vkeyf
(t) = softmax(W proj

f [vkeyf
(t−1);h(t−1);x(t)]) (13)

Whh
f

(t) =

4∑
j=1

vkeyf
(t)[j]×Wf [j] (14)

vkeyo
(t) = softmax(W proj

o [vkeyo
(t−1);h(t−1);x(t)]) (15)

Whh
o

(t) =

4∑
j=1

vkeyo
(t)[j]×Wo[j] (16)

i(t) = sigmoid(Whh
i

(t)h(t−1) +Whx
i x(t)) (17)

f (t) = sigmoid(Whh
f

(t)h(t−1) +Whx
f x(t)) (18)

o(t) = sigmoid(Whh
o

(t)h(t−1) +Whx
o x(t)) (19)

ĉ(t) = tanh(Whh
ĉ

(t)h(t−1) +Whx
ĉ x(t)) (20)

c(t) = f (t) � c(t−1) + i(t) � ĉ(t) (21)

h(t) = o(t) � tanh(c(t)) (22)

5 Experiments

5.1 Data

We use two datasets in our project:

• For natural language modelling, we will use the Penn Treebank (PTB) dataset which is composed
of 2499 stories selected from a set of 98,732 stories which appeared in the Wall Street Journal
(WSJ) over a three year period. This dataset has been annotated significantly with labels like
part-of-speech tags (among other things) but for our task of character-level language modelling,
we won’t be using these annotations.
• For the m-bounded Dyck-k language modelling (Dyck-RNN), we have an artificial dataset that

our project mentor John Hewitt has generated and shared with us. This dataset contains complete
sequences (i.e. sequences of parentheses in the m-bounded Dyck-k language for which each
opening bracket has a corresponding closing bracket) for m ∈ {4, 6, 8} and k = 2. For each value
of m and k, this dataset contains 24,000 complete input sequences, each of which has a length of
the order of 100’s of characters (parentheses).

5.2 Evaluation method

For the character-level natural language modelling task, we measure bits per character3 (BPC) on the
test set. For the word-level modelling task, we simply compute the average cross entropy loss on
the test set and use this for our comparisons. We compare mmRNNs and mmLSTMs against all our
baselines.

For closing bracket prediction, we compute the worst-case long-distance prediction accuracy
(WCPA) [5] for each m ∈ {4, 6, 8} and k = 2 (and report it as percentage points) where a pre-
diction is correct if at least 80% probability mass is assigned to the correct bracket.

3BPC is the average cross entropy over characters where the logarithms are taken in base 2.
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Model Type Model Config Layers Train Time (mins) Epochs to converge
Dyck model, m ∈ {4, 6, 8} h = m 1 3, 6 and 10 4, 2 and 1

Vanilla RNN h = 2032 1 59 26
Vanilla RNN h = 1194 2 58 23
Vanilla LSTM h = 991 1 43 18
Vanilla LSTM h = 589 2 57 22
mRNN h = m = 1972 1 51 7
mLSTM h = m = 977 1 53 9
mmRNN h = 1038 1 107 20
mmRNN h = 696 2 247 22
mmLSTM h = 512 1 108 20
mmLSTM h = 345 2 252 25

Vanilla RNN h = 133 1 9 29
Vanilla LSTM h = 125 1 10 33
Vanilla LSTM h = 115 2 16 47
mmRNN h = 128 1 11 24
mmLSTM h = 112 1 20 33
mmLSTM h = 97 2 59 50

Table 1: Experimental Details (Dyck, Character and Word models respectively)

5.3 Experimental details

We train the natural language models on the Tesla M60 GPU. For the character-level and word-level
language modelling task on PTB dataset, the learning rate was set to 0.001. For all our models, we use
the ADAM optimizer and clip gradients to 3.5. We set the maximum number of epochs to 200 and use
early stopping with a patience of 5. We have tried to keep the number of parameters approximately
the same for each model. We use a batch size of 128 for all the natural language experiments. We
apply a dropout of 0.25 to the hidden state before passing it through the softmax at each timestep so
as to help models generalize better. This dropout is applied to all the models described above in order
to have a fair comparison. For the character level modelling task, the emdedding size is 128 while the
word embedding size is 64. Other experimental details can be found in Table 1.

We optimized our implementations of mRNN, mLSTM, mmRNN and mmLSTM to allow us to
run bigger models with millions of parameters and this can be seen in comparable training times
with respect to vanilla RNNs and vanilla LSTMs which have been optimized for GPUs. We made
these optimizations by noticing, from our earlier implementations, that the most time and memory
consuming task was the construction ofWhh(t) matrices for the entire batch (i.e. of size batch_size×
hidden_size× hidden_size). Note that this is not the question of simple broadcasting of a fixed
Whh(t) because each element in the batch would have a different (input-dependent)Whh(t). However,
we realized that we can replace the operations in mmRNNs and mmLSTMs with equivalent operations
where we don’t have to construct these large matrices. This optimization allowed us to run models
which are more than 10 times the size of our earlier models.

We used a batch size of 512 for modelling Dyck-RNN. Dyck-RNN was trained on the CPU with a
learning rate of 0.01 and training stops when the dev loss goes below 10−5.

5.4 Results

Table 2 records the WCPA, BPC and the average cross entropy loss scores for Dyck-RNN and natural
language models.

Across both character and word level models, we can make the following observations: we see that
LSTM based models like Vanilla LSTM, mLSTM and mmLSTM perform better than their RNN
counterparts, which is expected. We see that the single layer mmLSTM performs better than single
layer vanilla LSTM and it converges in approximately the same number of epochs as the latter.
We also see that single layer and double layer mmRNNs perform better than their vanilla RNN
counterparts. This shows us that having input dependent transitions allows for the model to generalize
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Model Type Number of parameters Metric Metric score
Dyck model 5 WCPA 100, for all m ∈ {4, 6, 8}
Vanilla RNN 4.5M BPC 1.419
Vanilla RNN (2 layers) 4.5M BPC 1.369
mRNN 4.5M BPC 1.460
mLSTM 4.5M BPC 1.450
mmRNN 4.5M BPC 1.361
mmRNN (2 layers) 4.5M BPC 1.333
Vanilla LSTM 4.5M BPC 1.308
mmLSTM 4.5M BPC 1.301
Vanilla LSTM (2 layers) 4.5M BPC 1.283
mmLSTM (2 layers) 4.5M BPC 1.288

Vanilla RNN 2M Average CE loss 4.847
mmRNN 2M Average CE loss 4.822
Vanilla LSTM 2M Average CE loss 4.816
mmLSTM 2M Average CE loss 4.794
Vanilla LSTM (2 layers) 2M Average CE loss 4.770
mmLSTM (2 layers) 2M Average CE loss 4.818

Table 2: Experimental Results (Dyck, Character and Word models respectively)

better to unseen inputs and thereby outperform popular and ubiquitous architectures like LSTMs even
for millions of parameters. However, we also see that 2-layer mmLSTMs are not able to beat 2-layer
LSTMs and we hypothesize that it is because the number of hidden states in 2-layer mmLSTMs are
too small. It could also be because having input dependent transitions in the second layer (where the
input in this case is basically the hidden state of the previous layer) is not necessary. Investigating the
poor performance of multi-layer mmLSTMs is left to future work.

For the Dyck-RNN, we achieve 100% on WCPA, which is a strict metric. This high score shows that
the model effectively learns stack-like behavior by using only m hidden units. We also implemented
our natural language models (RNNs, LSTMs, mmRNNs and mmLSTMs) for the Dyck language
to investigate if natural language models could model hierarchical language. On evaluation, these
models failed miserably and none could achieve a WCPA score of above 50%.

6 Analysis

6.1 Generalizing from partial sentences

To test out our original hypothesis that having input dependent transitions can help models achieve
better generalization, we run the following experiment based on the character level language modelling
task: we cut off sentences during the training phase and use these partial sentences to train the model.
The validation/dev set still contains complete sentences and this set is used to pick the best model by
having early stopping with a patience of 5. The test set contains complete sentences too as we want
to see how models trained on curtailed sentences generalize to full sentences. We do this experiment
only for the vanilla LSTM and mmLSTM models because as per the results from Section 5, these two
are the best performing models. The results can be seen in Table 3. A sentence cutoff of 25 means
that during training we cut off sentences at 25 characters (including whitespaces). We can see that
for three different cutoffs (25, 50 and 75), the two-layer mmLSTM model generalizes better than all
the other models, including the two-layer vanilla LSTM. This gives an indication that having input
dependent transitions can lead to better generalization to unseen settings.

6.2 Unfreezing static embeddings in Dyck-RNN

To see if our Dyck model can learn if the embedding isn’t statically defined by hand, we unfreeze
the embeddings and train on the same closing bracket prediction task. This means that the gradients
now pass through the embeddings as well. In this case, we see that for a 1-dimensional embedding
(initialized randomly), the model is unable to achieve good performance on the WCPA metric.
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Model Type Number of parameters Sentence cutoff Test BPC
Vanilla LSTM 4.5M 25 1.591
Vanilla LSTM (2 layers) 4.5M 25 1.582
mmLSTM 4.5M 25 1.580
mmLSTM (2 layers) 4.5M 25 1.577
Vanilla LSTM 4.5M 50 1.427
Vanilla LSTM (2 layers) 4.5M 50 1.416
mmLSTM 4.5M 50 1.423
mmLSTM (2 layers) 4.5M 50 1.411
Vanilla LSTM 4.5M 75 1.369
Vanilla LSTM (2 layers) 4.5M 75 1.355
mmLSTM 4.5M 75 1.367
mmLSTM (2 layers) 4.5M 75 1.353

Table 3: Training on partial sentences

However, on increasing the embedding dimension to 2 and increasing the hidden units from m to
2×m, we find that the model is able to converge and achieve perfect scores on the WCPA metric for
all m ∈ {4, 6, 8}.

7 Conclusion

In this project, we explored input dependent transitions for recurrent neural networks. Our novel
architectures for doing input dependent transitions is able to perform as well as (and sometimes
better than) ubiquitous architectures like RNNs and LSTMs on character and word-level language
modelling tasks. We further evaluate variations of our models on character and word level modelling
tasks and present various qualitative and quantitative findings.
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