
Document Classification with DocBERT, et. Al.
Dale Angus dangus@stanford.edu

NOT FOR GRADING.

JUST WANT TO LET YOU KNOW THAT I DID THIS!

Abstract

In recent years, automated text classification has become a very important tool in the legal industry. (Jackson &

Moulinier, 2002) write: “There is no question concerning the commercial value of being able to classify documents

automatically by content. There are myriad potential applications of such a capability for corporate Intranets,

government departments, and Internet publishers.” Obviously, the ability to automatically classify legal documents

contributes to the increased productivity and efficiency of lawyers and could potentially reduce the millions of

dollars spent on discovery costs and legal support staff. In this paper, I present the results of my investigation of the

different NLP models with the goal of finding the best model that is suited for the task of classifying legal

documents, particularly long-length ones, in this case, the United States Supreme Court decisions.

1. Introduction

There have been several deep neural network NLP models that have attempted to classify documents and achieved

state of the art results during their time. In this study, I went through some of them to see how each performs in the

task of classifying long-length documents, in this case, United States Supreme Court decisions. Every decision

document is labeled with one specific “issue area”, a higher-level categorization of the issue, e.g., “Civil Rights”.

The models that have been tested here are the same models used by the authors of DocBERT (Adhikari, Ram, Tang,

& Lin, DocBERT: BERT for Document Classification, 2019) in their study. Their code is publicly available in

GitHub and is the same codebase this study used with some modifications to allow the code to work with this

particular dataset and some additional code for capturing into files the various epochal metrics such as loss and

accuracy values. The authors claim that their model is the first application of BERT to document classification.

BERT stands for Bidirectional Encoder Representation from Transformers, a language model published by

researchers at Google AI Language (Devlin, Chang, Lee, & Toutanova, 2018).

2. Related Work

I have cited several works related to text and/or document classification in the Models section below under

Approach. In addition, another study which deals with “long-length legal documents” (and which I found after I

have finalized all the experiments), is the work of (Wan, Papageorgiou, Seddon, & Bernardoni, 2019) where they

addressed the limitation that current models impose on the length of the input text and where they show that dividing

the text into segments improved results. I have performed the “chunking” of text in three different ways (four,

including “as-is”) as described in the Data Preparation section under Experiments.

3. Approach

I initially just wanted to study how Hierarchical Attention Network as stated in the initial project proposal but while

researching, I came across DocBERT. Fortunately, the author has provided their implementation and more. More

meaning that they also provided several other models that they used to benchmark DocBERT. I studied the code and

mailto:dangus@stanford.edu

saw that with some modifications to their codebase, Hedwig (University of Waterloo, n.d.), I could run all the

models to classify the dataset for this study, the US Supreme Court decisions. All code is based on Pytorch 0.4.1.

In addition to the class-sponsored Azure compute environment, I used my personal computer that is well-equipped

to train some of the less compute-intensive models and another compute environment using the free $100-credit for

students from Azure. I ran the HAN, Reg-LSTM, DocBERT in the Azure environment. The Kim CNN, CharCNN,

XML CNN, LR, fastText were ran using my personal computer. See description of these models below.

For baseline purposes, I use the Logistic Regression1 and fastText as co-baseline models since both provide

competitive baselines. The models are evaluated by their accuracy score.

3.1. Models

Listed below are the models that are included in this study, according to the publish date.

Convolutional Neural Networks for Sentence Classification (Kim, 2014). The author developed a CNN model

trained on top of pre-trained word vectors (word2vec) for sentence classification. Referred to as KIM CNN in the

tables and charts below.2

Character-level Convolutional Networks for Text Classification (Zhang, Zhao, & LeCun, 2015). The authors offer

an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification.

Referred here as CharCNN.3

Bag of Tricks for Efficient Text Classification (Armand Joulin, 2016). The authors wrote that their experiments show

that their fast text classifier fastText is often on par with deep learning classifiers in terms of accuracy, and many

orders of magnitude faster for training and evaluation. Referred here as fastText.4

Hierarchical Attention Networks for Document Classification (Yang, et al., 2016). The authors describe the model

as a model that progressively builds a document vector by aggregating important words into sentence vectors and

then aggregating important sentences vectors to document vectors. Referred here as HAN.5

Deep Learning for Extreme Multi-label Text Classification (Liu, Chang, Wu, & Yang, 2017). The authors were the

first to attempt at applying deep learning to XMTC with a family of new Convolutional Neural Network (CNN)

models which are tailored for multi-label classification in particular. Extreme multi-label text classification (XMTC)

refers to the problem of assigning to each document its most relevant subset of class labels from an extremely large

label collection where the number of labels could reach hundreds of thousands or millions. Referred here as XML

CNN.6

Rethinking Complex Neural Network Architectures for Document Classification. (Adhikari, Ram, Tang, & Lin,

2019) The authors agree with other members of the NLP community that neural networks have grown increasingly

complex in recent years, making training and deployment more difficult. They present a simple BiLSTM

architecture with appropriate regularization. Referred here as Reg-LSTM.7

DocBERT: BERT for Document Classification (Adhikari, Ram, Tang, & Lin, 2019). The authors present the very

first application of BERT to document classification and show that a straightforward classification model using

BERT was able to achieve state of the art across four popular datasets. The author acknowledges that their code is

inspired from (huggingface)’s implementation. Referred here as DocBERT.8

1 Used sklearn.feature_extraction.text.TfidVectorizer (scikit-learn, 2011)
2 Used embedding word2vec/GoogleNews-vectors-negative300.bin (Mikolov, Chen, Corrado, & Dean, 2013)
3 Ibid.
4 Ibid.
5 Used embedding glove.6B.300d (Pennington, Socher, & Manning, 2014)
6 Used embedding word2vec/GoogleNews-vectors-negative300.bin (Mikolov, Chen, Corrado, & Dean, 2013)
7 Ibid.
8 Used model bert_pretrained/bert-based-uncased (Google Research, 2018)

It should be interesting to the reader that all models except DocBert have a custom implementation of

torch.nn.Model subclass. DocBERT uses huggingface’s BertForSequenceClassification, a regular PyTorch module,

from the transformers Python package.

4. Experiments

4.1. Data

The dataset is the US Supreme Court decisions which can be downloaded from Textacy (Textacy, 2017). Textacy

collected the data from the FindLaw (FindLaw.com, 1995) website and added various metadata9. It contains exactly

8419 decisions with various labels.

The label used in this study is issue_area with the codes and histogram distribution below. Each record is classified

with only one issue area.

-1: None

1: Criminal Procedure

2: Civil Rights

3: First Amendment

4: Due Process

5: Privacy

6: Attorneys

7: Unions

8: Economic Activity

9: Judicial Power

10: Federalism

11: Interstate Relations

12: Federal Taxation

13: Miscellaneous

14: Private Action

Figure 1 Histogram showing the counts per issue area.

The average number of words per decision is 6,962 with a maximum of 87,246 words and minimum of 11.

4.2. Data Preparation

The issue_area codes were converted to one-hot format while the text was prepared four different ways (see Table

1). First preparation, Data Prep 1, the dataset was setup with the class in one-hot format and the text, as-is,

regardless of the length. Second, Data Prep 2, the text was separated in 50,000-character chunks. All derived

chunks are added as a sample of the same class. Third, Data Prep 3, the text was divided in 20,000-character

chunks with the subsequent chunk having a 5,000-character overlap from the previous chunk. And the fourth data

preparation, Data Prep 4, is specifically for the DocBERT model. Because of the 250-limit sequence length

required by BERT, similar to the 2nd and 3rd preparation method, the document was chunked into 250 words with an

overlap of 50 words. The dataset for the 4th data preparation ballooned to 389,886 rows with an average of 199.74

words per row with a maximum of 200 and a minimum of 11.

9 https://chartbeat-labs.github.io/textacy/build/html/api_reference/datasets.html?highlight=supreme%20court

#textacy.datasets.supreme_court.SupremeCourt

The dataset was split 60-15-25 to allow more test samples for measuring the accuracy score. Since this is a

classification task, accuracy is the best measure for the performance of the models.

Table 1- The same dataset with different preparations. Total samples and the 60-15-25 split count.

Dataset Samples Train Dev Test

Data Prep 1 8,914 5,348 1,337 2,229

Data Prep 2 10,931 6,559 1,639 2,733

Data Prep 3 23,713 14,228 3,557 5,928

Data Prep 4 389,886 233,932 58,482 97,472

4.3. Results

Running the models using the first data preparation proved to be very problematic. Multiple models ran into one or a

combination of problems such as out-of-memory issues very slow training and poor performance. The problem may

be due to the sparsity of the encoded text. As noted, the average is 6,962 words with a single row having 87,246

words. This data preparation had to be abandoned as there were no meaningful results from it. The second and third

data preparation did not have problems and completed without problems. This proves that dividing documents into

chunks before inputting them into the models resulted in higher accuracy scores.

The time to completion for the experiments vary. The fastText model, on all the data preparations, was the quickest

to complete. The claim made by the authors of fastText that it is in the order of magnitudes faster than the deep

learning models proved to be true. The CNN models on Data Prep 2 and 3 finished in less than 20 minutes. Each

CNN models were given 30 epochs to complete but the models stopped making performance gains and triggered an

early-stop where patience=5. The Logistic Regression took longer to finish because it completed the 50 epochs

given to it making continuous gain at every epoch. The Reg-LSTM and HAN models took hours to complete on

Data Prep 2 and 3. The DocBERT took ten (10) days to complete training with Data Prep 4.

Non-BERT models versus co-baselines LR and fastText

Tables 2 and 3 below show the accuracy scores of each model for Data Prep 2 and 3, respectively. Except for

CharCNN, all models improved their respective accuracy score from Data Prep 2 to Data Prep 3. Figures 2 and 3

show where the respective model’s accuracy in predicting by class. The results from the two data preparations show

that Logistic Regression and fastText produce better accuracy scores than the deep learning models.

Table 2 – Model Accuracy Scores using dataset Data Prep 2. Each document is split

into 50,000-character chunks.

Model Accuracy

Logistic Regression TF-IDF 0.8042 (2nd)

Hierarchical Attention Network 0.6926

KIM CNN 0.6352

XML CNN 0.5935

Regularized LSTM 0.5540

CharCNN 0.2704

fastText 0.8138 (1st)

Figure 2 Accuracy by class of each model using Data Prep 2.

Table 3- Model Accuracy Scores using dataset Data Prep 3. Each document is split

into 20,000-character chunks with 5,000-character overlap from the previous chunk.

Model Accuracy

Logistic Regression TF-IDF 0.8797 (1st)

Hierarchical Attention Network 0.7686

KIM CNN 0.7351

XML CNN 0.6354

Regularized LSTM 0.5833

CharCNN 0.2314

fastText 0.8765 (2nd)

Figure 3 Accuracy by class of each model using Data Prep 3.

0

0.2

0.4

0.6

0.8

1

LR XML CNN Char CNN Kim CNN Reg_LSTM HAN fastText

Accuracy by Class

0 - None 1 - Criminal Procedure 2 - Civil Rights 3 - First Amendment
4 - Due Process 5 - Privacy 6 - Attorneys 7 - Unions
8 - Economic Activity 9 - Judicial Power 10 - Federalism 11 - Interstate Relations
12 - Federal Taxation 13 - Miscellaneous 14 - Private Action

0

0.2

0.4

0.6

0.8

1

LR XML CNN Char CNN Kim CNN Reg_LSTM HAN fastText

Accuracy by Class
0 - None 1 - Criminal Procedure 2 - Civil Rights 3 - First Amendment
4 - Due Process 5 - Privacy 6 - Attorneys 7 - Unions
8 - Economic Activity 9 - Judicial Power 10 - Federalism 11 - Interstate Relations
12 - Federal Taxation 13 - Miscellaneous 14 - Private Action

DocBERT model versus co-baselines LR and fastText

Table 4 shows the accuracy of DocBERT compared to the co-baseline LR and fastText and HAN, the 3rd best model

from the results using Data Prep 2 and 3. Figure 4 shows that DocBERT has a higher accuracy on the four classes

with the highest number of samples, classes 1, 2, 8 and 9 (see also Figure 1).

It took 10 days to train the DocBERT model to classify the US Supreme Court decision documents compared to the

few hours to train the others, but it surpassed the benchmark accuracies significantly. The accuracy of DocBERT

could have reached higher levels if it kept running further and not stopped after a pre-defined setting of thirty (30)

epochs.

Table 4 - Model Accuracy Scores using dataset Data Prep 4. Each document is split

into 200-word chunks with 50-word overlap from the previous chunk.

Model Accuracy

Logistic Regression TF-IDF 0.8747

fastText 0.8599

Hierarchical Attention Network 0.6355

DocBERT 0.9173

Figure 4 Accuracy by class of each model using Data Prep 4.

Analysis

TODO 😐

Conclusion and Future Work

In this study I have shown which models are effective in classifying long-length documents. I was able to replicate

the success reported by the authors of DocBERT as far as surpassing the baseline models, Logistic Regression and

fastText. TODO 😐

0

0.2

0.4

0.6

0.8

1

LR fastText DocBERT HAN

Accuracy by Class
0 - None 1 - Criminal Procedure 2 - Civil Rights 3 - First Amendment
4 - Due Process 5 - Privacy 6 - Attorneys 7 - Unions
8 - Economic Activity 9 - Judicial Power 10 - Federalism 11 - Interstate Relations
12 - Federal Taxation 13 - Miscellaneous 14 - Private Action

One possible work for the future is to study how RoBERTa (Liu, et al., 2019) can be applied to document

classification. It should be easy to adapt RoBERTa for this study. A small change must be done in adding the tokens

to fit the RoBERTa specification. Adding the tokens is slightly different between BERT and RoBERTa, for

example, BERT uses [CLS] and [SEP] while RoBERTa uses <cls> and <sep>.

References

Adhikari, A., Ram, A., Tang, R., & Lin, J. (2019). DocBERT: BERT for Document Classification. Arvix.

Adhikari, A., Ram, A., Tang, R., & Lin, J. (2019). Rethinking Complex Neural Network Architectures for

Document Classification. ACL Anthology, 4046-4051.

Armand Joulin, E. G. (2016). Bag of Tricks for Efficient Text Classification. Arvix.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. Arvix.

FindLaw.com. (1995). Retrieved from FindLaw: http://caselaw.findlaw.com/court/us-supreme-court

Google Research. (2018). google-research/bert. Retrieved from http://github.com/google-research/bert

Jackson, P., & Moulinier, I. (2002). Natural Language Processing for Online Applications: Text Retrieval,

Extraction and Categorization. John Benjamins.

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. CoRR.

Liu, J., Chang, W.-C., Wu, Y., & Yang, Y. (2017). Deep Learning for Extreme Multi-label Text Classification.

SIGIR '17: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in

Information Retrieval, (pp. 115-124).

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., . . . Stoyanov, V. (2019). RoBERTa: A Robustly Optimized

BERT Pretraining Approach. Arvix.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). word2vec. Retrieved from Google Code Archive:

https://code.google.com/archive/p/word2vec/

Pennington, J., Socher, R., & Manning, C. D. (2014). Retrieved from GloVe: Global Vectors for Word

Representation: https://nlp.stanford.edu/projects/glove/

scikit-learn. (2011). sklearn.feature_extraction.text.TfidfVectorizer. Retrieved from https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

Textacy. (2017). Retrieved from Textacy: https://chartbeat-

labs.github.io/textacy/build/html/api_reference/datasets.html#api-reference-datasets

University of Waterloo. (n.d.). Hedwig. Retrieved from Github.com/castorini/hedwig.

Wan, L., Papageorgiou, G., Seddon, M., & Bernardoni, M. (2019). Long-length Legal Document Classification.

Arvix.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., . . . Brew, J. (2019). HuggingFace's

Transformers: State-of-the-art Natural Language Processing. ArXiv. Retrieved from Transformers:

https://github.com/huggingface/transformers

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical Attention Networks for Document

Classification. Proceedings of the 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (pp. 1480–1489). San Diego: Association for

Computational Linguistics. Retrieved from www.cs.cmu.edu.

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level Convolutional Networks for Text Classification. Advances

in Neural Information Processing Systems 28, 649-657.

