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Abstract

ICD-9 code (International Classification of Diseases, version 9) classification has
long been a burden on our healthcare system due to the time-intensive process of
manual curation of disease codes. We apply current state of the art NLP models
to the task of automatic ICD-9 code classification on free-text clinical notes of
MIMIC-III [1]. Our goal was to exceed the baselines established by Huang et al.
[2], which achieved an F1 score of 0.696 and an accuracy of 0.896 from their best
model, a GRU RNN, trained and tested on notes of type “Discharge summary.”
With our best model, based on fine-tuning BlueBERT, we are able to achieve an
accuracy of 0.8521 and F1 of 0.7074. We also evaluate the performance of these
models when trained on notes of all types, which has not been done before to the
best of our knowledge.

1 Key Information to include
• External collaborators / Sharing project: None
• Mentor (custom project only): Emma

2 Introduction

Diagnosing patients using ICD-9 (International Classification of Diseases, version 9) coding is im-
portant for billing procedures on patient discharge and ensuring an informative and correct patient
history. ICD-9 was the standardized vocabulary of medical terminologies used for over 35 years [3].
The ICD-9 codes consist of 5 digits: the first 3 digits represent a generalized medical concept, and
the last 2 digits represent specific variations of that concept. Although ICD-9 had been used as a
standard in clinical care for many years, it eventually became a default system for classifying any
type of medical condition, regardless of its original purpose. While ICD-9 was intended to classify
diseases to allow physicians to immediately understand the state of a patient’s health across systems,
it soon became entangled with a plethora of other uses that made it difficult to comprehend. When
the MIMIC-III dataset was collected, ICD-9 was used for diagnosing diseases, medical procedures,
accidents, and billing. In the scope of this project, ICD-9 is used for discharge codes used to bill
patients with the most accurate description of the treatment by their physician. As of today, ICD-9
has been replaced by ICD-10, expanding the amount of terms available from 14,025 [4] codes to
∼155,000 [3].

Making use of medical knowledge in electronic health records has proven to be especially difficult.
Many clinical decision support models are limited by poorly structured data. Roughly 80% of time
spent creating clinical models is simply processing the data, including data merging, cleaning, and
extracting essential variables, severely limiting their predictive capacity. With all the extra informa-
tion available, predictive models struggle to select the most important variables to make decision
support useful [4].
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Because traditional models struggle with unkempt data, deep learning could be the key to better
clinical support because it works well with unstructured data. One avenue that would benefit from
better learning approaches is ICD-9 code classification. Automatic or assisted assignment of ICD-9
codes on patient discharge would relieve a tremendous burden on our healthcare system. Currently,
the process of coding is largely a manual, labor-intensive task due to the existence of thousands of
possible codes each with their own fine-grained description of every possible condition. Classifi-
cation is determined largely by a patient’s history, treatments, and observations recorded by their
physician during inpatient stay in the unstructured “clinical note” section of their Electronic Health
Record. Each patient’s health record also contains lab tests, vital tests, body measurements, and
demographics. Many researchers incorporate the entire EHR, including all data available taken over
time, to make predictions about mortality probability, 30-day unplanned re-admission probability,
length of stay, and more [4]. Here, we focus on ICD-9 code prediction for the top-10 most common
codes using only the free text clinical notes. One major benefit of this isolated task is that we do not
need to spend excessive time harmonizing the data, including rigorous feature extraction or feature
engineering.

3 Related Work

We directly compare our performance to the work of Huang et al. [2], which evaluated various
deep-learning techniques on automatic ICD-9 code classification. As described by the authors, their
work is intended to serve as a proof-of-concept and as a baseline for evaluating deep-learning based
techniques on clinical applications. Analyzing only the clinical notes of type “discharge summary”,
they had optimistic results with standard deep learning NLP architectures, such as RNNs. For top-
10 ICD-9 code prediction, their best model, a GRU-based RNN, achieved an F1 score 0.6957 and
an accuracy of 0.8967. They also experimented with LSTMs, achieving a top-10 code F1 score
of 0.6738, with CNNs achieving an F1 score of 0.6481, and with traditional logistic regression
achieving an F1 score of 0.6141.

Other works have utilized all available EHR data in their task of ICD-9 code prediction. [4] per-
formed in-hospital mortality, 30-day unplanned readmission, prolonged length of stay, and ICD-9
discharge code classification from two US academic medical centers. Their models included an
LSTM RNN, an attention-based time aware neural network (TANN), and a neural network with
boosted time-based decision stumps, all combined with ensembling. Using all available medical
data (not just clinical notes), they made predictions for every possible ICD-9 code, ensuring each
code must have an exact match to be deemed correct (For instance, code 250.4 would be different
from 250.42). They were able to achieve an accuracy of 0.90, an F1-score of 0.41, and an AUC ROC
of 0.87.

4 Approach

Because there are ∼14,025 ICD-9 codes, we simplified the problem to predict only the top-10 most
common codes, an approach used by Huang et al as well. We used Google BigQuery [5] for initial
data pre-processing to associate notes with their codes and remove notes that were not assigned a
code in the top-10. The distribution of the top-10 codes is shown in Fig. 1. Both training and testing
were performed only with notes that were assigned at least one code in the top-10, which reduced the
size of our dataset from about 2 million notes to 1.2 million. The top-10 codes and their definitions
are detailed in Table 1. First, we trained and tested several models on the entire set of 1.2 million
notes. Then, we filtered for only the notes which were categorized as “discharge summary", which
reduced our dataset size to 59,652 notes, and trained and tested additional models using the smaller
set of only “discharge summary” notes.

For experiments performed on all 1.2 million notes, we used a train/validation/test split of approx-
imately 90/5/5, but we did not end up evaluating our models over the test set due to resource con-
straints. For experiments performed using the smaller set of only “discharge summary” notes,
we used a train/validation split of approximately 75/25 without a test set. We performed the
train/validation/test splits ensuring that notes for the same patient will always be placed in the same
group. Finally, we exported the data in a CSV format that can be easily read using a Pytorch dat-
aloader, with a binary column for each of the ten codes.
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Code Definition

25000 Diabetes mellitus without mention of complication, type II or unspecified type
2724 Hyperlipidemia NEC/NOS (Other and unspecified hyperlipidemia)
4019 Hypertension NOS (Unspecified essential hypertension)
41401 Coronary atherosclerosis of native coronary artery
42731 Atrial fibrillation
4280 Congestive heart failure, unspecified
51881 Acute respiratory failure
53081 Esophageal reflux
5849 Acute kidney failure, unspecified
5990 Urinary tract infection, site not specified

Table 1: Top 10 most common ICD-9 codes and their definitions

Figure 1: ICD-9 Code Distribution

Since Huang et al. already performed many experiments with RNN-based architectures, we pri-
oritized experiments with current state-of-the-art techniques such as transformer and BERT-based
models. We tested several approaches: a transformer encoder model trained from scratch, a pre-
trained BERT model fine-tuned for our task, a BlueBERT model with pre-trained word embeddings
derived from medical papers in PubMed [6] and MIMIC-III, and an attention-based bidirectional
LSTM RNN.

Our first approach, the transformer encoder trained from scratch, was built by adapting example
code for text classification from GitHub user Allen Lee [7]. This model consisted of six transformer
encoder layers each with eight attention heads, operating on 256 features. Tokenization was per-
formed using SentencePiece, which we trained ourselves on the MIMIC-III dataset. The original
code was designed for single-label classification, but most notes in MIMIC-III are assigned multiple
ICD-9 codes. Therefore, we made modifications to perform multi-label classification by changing
the loss function to BCEWithLogits loss (multi-class cross entropy) with mean reduction, as shown
in equation 1.

lc(ŷ, y) = {l1,c, ...., lN,c}T , ln,c = −wn,c [yn,c · logσ(ŷn,c) + (1− yn,c) · log(1− σ(ŷn,c))] (1)

Here, N is the batch size, c is the number of classes, and wn,c are the class weights, set to 1. We
also created 10 output nodes in the final linear layer, corresponding to each of the top-10 codes. We
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then passed each of the output logits through a sigmoid function and predicted any code with a score
greater than a threshold. Finally, we computed the evaluation metrics, accuracy and F1 score.

The second approach was fine-tuning BERT [8], a language representation model developed by
Google. We adapted the starter code for BERT from a youtube video [9]. The BERT model is
pre-trained on a large corpus of unlabelled text and has developed a deep bidirectional learning rep-
resentation for freeform text. It can be fine tuned to a specific task, like text classification, by simply
adding a linear layer on top of the existing model. We built this model using the BertForSentence-
Classification module in huggingface [10], performing similar modifications as described above to
adapt it for multi-label classification. The specific model we fine-tuned was Bert-Base, Uncased,
with 12 transformer blocks, 768 hidden units, and 12 attention-heads.

The third approach was fine-tuning BlueBERT, a BERT-based model pre-trained on PubMed ab-
stracts and MIMIC-III clinical notes [11]. Like our BERT model, we added an extra linear layer
on top of the existing model to transform our output into 10 classes, one for each ICD-9 code. We
also implemented the BCEWithLogits loss for multi-class classification. Three small architectural
variations of this were additionally explored: (1) Adding three linear layers with ReLU non-linearity
instead of just one linear layer, (2) Freezing the BlueBERT weights from the first variant so that only
the linear layer weights would be tuned, and (3) adding a dropout layer after the BERT layer from
the second variant.

Additionally, we experimented with different techniques for dealing with notes that were longer than
512 tokens, since BERT caps at 512. Our first BlueBERT model truncated the text after 512 tokens
and used that for prediction. Next, we tried splitting the text into two chunks of 512: the first 512
tokens and last 512 tokens, and combined the output logits through max pooling. Next, we tried
splitting into chunks of 256. We created four 256-blocks: one at the beginning, two in the middle,
and one at the end. We tried combining these chunks together using two different techniques: one by
max pooling their logits, and the other by concatenating the final hidden layers together and adding
an extra linear layer to reduce this to 10 output nodes.

Finally, we wanted to compare these results to our own LSTM with attention. We implemented the
attention from the GitHub code by [12]. The word vectors used were obtained from the BioWord-
Vec Model [13], which applies fastText [14] to compute 200-dimensional word embeddings using
PubMed and MIMIC-III clinical notes.

5 Experiments

5.1 Data

We used the MIMIC-III (Medical Information Mart for Intensive Care III) dataset which is a large,
open dataset containing deidentified medical data of over 40,000 patients staying in the Beth Israel
Deaconess Medical Center between 2001 and 2012. The dataset contains demographical informa-
tion, vital signs, lab tests, procedures, medications, mortality outcomes, and clinical notes. We
focused solely on the free-text clinical notes written by physicians describing their patients in the
ICU.

5.2 Evaluation method

We used F1 score and accuracy for each model, which were the metrics used by Huang et al. for
evaluation. We computed these metrics using scikit-learn [15, 16]. For our best model (BlueBERT
512-chunked), we calculated the AUC ROC for the prediction of each code. We also tested different
thresholds in the BlueBERT model and chose the threshold that maximized our F1 score, which
turned out to be 0.4.

5.3 Experimental details

For our simple transformer encoder model run on the entire note corpus, we used a learning rate of
1e-4 and a dropout probability of 0.3, trained over a 90-5-5 train-validation-test split. The model
took ∼8 hours per epoch. The same setting applied to the “discharge summaries” corpus took ∼ 2
hours per epoch.
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For our BERT-base uncased model on the entire corpus, we trained with learning rates 3e-5 and 2e-5.
The training took between 20 and 50 hours per epoch on a GPU with a batch size of 4. When we ran
these models on just the notes filtered by “discharge summary”, we used a 75-25 train-test split. The
transformer encoder used the same learning rate of 1e-4, and the BERT model only used a learning
rate of 2e-5. The BERT model took 3 hours per epoch to train.

For our BlueBERT models, we performed training on the same sets as above: the 90-5-5 split for
all clinical notes, and the 75-25 split for “discharge summaries”. These models used a learning
rate of 2e-5. For the large text corpus, training took roughly 30 hours per epoch. On the discharge
summaries corpus, training took 7 hours per epoch with a batch size of 4.

For the LSTM RNN with attention model, we used a learning rate of 1e-3. We used pre-existing
word embeddings derived from BioWord2Vec. Due to to the size of the word embeddings, we
limited the number of tokens loaded to the top 1 million. The max sentence size used for the LSTM
was 1000 tokens. Training took 1 hour per epoch with a batch size of 128.

5.4 Results

All Clinical Notes Training Validation

Accuracy F1 Accuracy F1

Transformer Encoder 0.7711 0.3331 0.7780 0.3957

BERT, lr=3e-5 0.8073 0.5429 0.8119 0.5128
BERT, lr=2e-5 0.8349 0.5967 0.78 0.47

Table 2: Model performances for top-10 codes using all clinical notes

Table 2 shows the results of training our models on the full corpus of 1.2 million notes that are
associated with a top-10 ICD-9 code. Unlike Huang et al., these include notes that are not of type
“discharge summary.” These notes can be taken at any point in time during a patient’s stay, not
necessarily when they are released, so models trained on these notes can be used for a wider range
of tasks (beyond administrative tasks such as billing). The best model here was BERT with a learning
rate of 3e-5, yielding an F1 score of 0.5128 and an accuracy of 0.8119.

Discharge Summary Clinical Notes Training Test

Accuracy F1 Accuracy F1

Huang et al. LSTM RNNs 0.9154 0.7445 0.8950 0.6874

Huang et al. GRU RNNs 0.9126 0.7397 0.8967 0.6957

Transformer Encoder 0.9524 0.8393 0.8526 0.663

BERT, lr=2e-5 0.8690 0.7204 0.8375 0.6569

BlueBERT 512-chunked, maxpool 0.8828 0.7660 0.8521 0.7074
BlueBERT 256-chunked, maxpool 0.8723 0.7452 0.8361 0.6769

BlueBERT 256-chunked, llayer 0.8616 0.7181 0.8382 0.6735

BlueBERT w/ addl. linear layers, lr=2e-5 0.8722 0.7446 0.8290 0.6629

BlueBERT (frozen) w/ addl. linear layers 0.8863 0.7740 0.8234 0.6534

BlueBERT (frozen) w/ addl. linear layers+dropout 0.8927 0.7873 0.8238 0.6545

LSTM with attention 0.8949 0.7275 0.8396 0.65

Table 3: Model performance for top-10 codes using “discharge summary” clinical notes
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Table 3 shows performance results for models trained on clinical notes that were categorized as
“discharge summary”. This is the same corpus used by Huang et al., except we used a 75/25 training-
validation split instead of a 50/25/25 training-validation-test split. We tested nine different models:
a transformer encoder, an unmodified BERT model, six variations of BlueBERT, and an LSTM with
attention. The BlueBERT 512-chunked model was split into a prefix of 512 tokens and suffix of 512
tokens, with their output states max pooled before prediction. This model beat Huang et al.’s best
F1 score, producing a value of 0.7074. However, the accuracy of their GRU RNN was higher, with
a value of 0.8967.

We took our best model, BlueBERT 512-chunked max-pooled, and plotted an ROC curve for each of
the 10 ICD code classifiers. Figure 2 shows the ROC-Curves for all the top-10 ICD-9 Codes obtained
using the BlueBERT Model. Our model works best with predicting code 41401, and performs the
worst with code 59900. The average AUC ROC is 0.8769.

Figure 2: ROC-Curves w/ ROC AUC Scores for ICD-9 Codes

6 Analysis

Our models performed moderately well on the dataset, but we were expecting higher gains in F1
score and accuracy using BERT compared to the GRU RNN of Huang et al. Our best model, Blue-
BERT 512 chunked max-pooled, beat their F1 score narrowly: 0.7074 to 0.6957. However, we did
not beat their accuracy, which was 0.8521 to 0.8967. We speculate that our accuracy is worse be-
cause our model is more sensitive but less precise; it is good at predicting positive for classes and
detecting the code if it is real, but may predict positive too often and not always when it should. This
would reflect a larger F1 score but a decrease in accuracy.

It is difficult to say conclusively that our model performs better than theirs because our F1 score
was only marginally better and did not score a higher accuracy. There are different reasons why the
model did not perform as well as it could. First, instead of chunking the entire text, we just combined
the first and last 512 tokens, which was a decision made due to GPU constraints and time. Second,
we used the BERT-base model, not the BERT-large which is larger and more compute-intensive,
having 24 transformer blocks, 1024 hidden units, and 16 attention heads, thereby making it more
expressive. We also opted to use the BlueBERT model that used BERT-base, similarly due to the
finite resources available.

Finally, we did not perform enough data pre-processing to extract key words from the clinical notes.
One idea is to filter the words by TF-IDF score and only keep words that are enriched, a technique
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that was explored by Huang et al. Similarly, tokens could be passed through a knowledge base like
UMLS (Unified Medical Language System) [17] that can condense medical concepts to a single
token. This could be important for word embeddings because there are many ways of describing a
medical condition, but the model might only be trained on one particular verbiage and not the others.

For our non-BlueBERT models, we believe that the reasons for their sub-par performance are mul-
tifold. Unlike BlueBERT, they were not trained with PubMed abstracts and biomedical literature,
which would make capturing the semantic meaning of medical terms more difficult. Additionally,
we did not experiment with chunking for the normal BERT model, so it was limited to only the first
512 tokens in the text. This could lead to loss of important information that could be used to make
a decision.

Our LSTM with attention model also showcased sub-par performance. This could be because we
only considered 1 million tokens from BioWord2Vec and restricted the max sequence length to
1000. These choices were made due to compute and time limitations. Increasing either the number
of tokens loaded or the max sequence length would make the model more expressive and improve
performance. Also, we used multiplicative attention in our model which does not scale well to higher
dimensions. Instead, we could use additive attention which introduces a non-linearity, resulting in
greater expressive power.

The performance of the transformer encoder performance was also worse than expected. This could
be because clinical notes were truncated after 256 tokens, which resulted in a substantial loss of
semantic meaning compared to the RNN baseline models which used the whole text. This could
be fixed by filtering words by their TF-IDF scores to select the 256 best words to use in the model.
Also, the training performance was much higher than the test performance, which indicates that
the model was severely overfitting. This could be fixed by adding a regularization term to the loss
function or by increasing the dropout probability. Furthermore, our results for the BERT models are
also under-performing. It could be caused by any of the following: truncation at 512 tokens, poor
word embeddings for medical vocabulary, and sub-optimal threshold for prediction.

7 Conclusion

Our results demonstrate that transformer-based neural network architectures are quite appropriate
for the task of ICD-9 code classification using clinical notes, producing comparable results to the
best RNN-based architectures from prior work. However, producing substantially better results than
these RNN architectures may require significantly more data pre-processing and/or architectural
modifications; in other words, substituting BERT for RNNs will not immediately produce dramatic
performance gains in this task.

Although our best BERT-based model narrowly achieves a higher F1 score over the test data, we
cannot conclusively determine that our model works better. Our BlueBERT model, split into a prefix
and suffix of 512 tokens each, combined with max-pooling, achieved an accuracy of 0.8521 and F1
score of 0.7074. Our accuracy was ∼5% lower, and our F1 score ∼0.012 higher. We were hoping to
achieve greater performance gains. Rajkomar et al., using additional features such as lab and vital
test data, demonstrated optimistic predictive power of deep learning methods in clinical settings
by achieving an accuracy of 0.90, an F1-score of 0.41, and an AUC ROC of 0.87 for all ICD-9
code classification. While fine-tuned BERT models have demonstrated to be superior to previous
architectures in many other tasks, this does not appear to be the case for ICD-9 code classification
with the models we tested. Producing higher quality models for this task requires more architectural
ingenuity than running BERT with small modifications.

An additional contribution of our work is that we establish baseline performance metrics for ICD-9
code classification using all notes in the MIMIC-III dataset, not only “discharge summary” notes.
This presents a solution to a new problem: prediction of disease at a given point in a patient’s
timeline. Although this concept has been tried extensively by the works of Rajkomar et al. using
the entire EHR, this task has not been performed yet for prediction with just the clinical notes. We
expect our scores to be used as a baseline for this task, given that adding lab and vital test data can
only improve prediction.

While our results show potential in transformer-based neural network architectures, we believe that
in the future we can expand our work to further increase performance. As mentioned previously in
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our discussion, there is much potential in improving our data pre-processing pipeline. Transformer
based models often struggle with large amounts of text, which indeed presents a problem for the
lengthy discharge summaries written by physicians. We speculate that by reducing the number of
words in each note, we could improve prediction. This can be performed by selecting words by
their TF-IDF score or using a knowledge base like UMLS to replace verbose descriptions with terse
identifiers. We also expect better performance using BERT-large and chunking the entire note into
sections, rather than selecting just the prefixes and suffixes.

Overall, we have shown that transformer-based neural network architectures are promising models
for use in ICD-9 code classification. Our tests demonstrated that they can perform better than prior
RNN architectures. However, they will still require more data pre-processing or further adjustments
to their architecture to maximize performance.
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