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Abstract

Though “or” in formal semantics and logic is often understood as a logical operator
with a well-defined truth table, the exclusivity vs. inclusivity of “or” in natural
language often fluctuates sentence-to-sentence and depends on subtle linguistic
cues. This paper explores the ability of neural networks to predict the behav-
ior of “or” across various sentence structures. We assess the performance of a
biLSTM-based sentence encoder trained on an English dataset of human inference
inclusivity-exclusivity ratings, experimenting with three different pre-trained word
embedding models, with and without self-attention. We find the best-performing
model to utilize BERT embeddings without attention, which exceeds expectations
by predicting human inference ratings with r = 0.35.

1 Introduction

The word “or” is often thought of in its capacity as a logical connective (e.g. p v q) – to express an
inclusive or exclusive choice between two options. In natural language, however, “or” tends to be
less binary, and can function in up to eight different manners [1]. Often, the inclusivity-exclusivity
judgments that English-language speakers make are based on intuition and linguistic experience,
which further complicates interpretation by listeners. The question of how to determine whether and
to what extent “or” is meant inclusively or exclusively in a given context is an interesting linguistic
challenge, and can additionally help identify specific sentence-level features that are strong indicators
of inclusivity or exclusivity.

In recent years, several studies have focused on predicting scalar inference for similar utterances via
classical methods such as Bayesian inference and RSA models of language understanding [2] [3]
[4]. While these methods have drawbacks (in some cases, requiring manual feature engineering - see
Section 2.1), neural network models have shown promise in predicting inference strength for related
tasks [5], indicating that sentences likely contain linguistic cues which could aid interpretation.

In this study, we analyze the extent to which neural network models can predict the behavior of “or”
in various sentence structures. Building off the work of [5], who model the behavior of "some" with
regard to scalar inference strength, we apply several bidirectional LSTM-based model architectures
to an English dataset, experimenting with three types of word embeddings: GloVe, BERT, and
BERT-Large. We then adjust model complexity to optimize performance via hyperparameter tuning,
and predict inclusive and exclusive inferences. After testing, we perform both quantitative and
qualitative analyses of the results, including identifying sentence-specific features which may hinder
models’ predictive power.

We find that using a bidirectional LSTM without self-attention and BERT embeddings outperforms
the other embedding/attention combinations, yielding a correlation coefficient of 0.35 between the
model and human predictions, which exceeds expectations. Furthermore, during the qualitative
analysis, we notice that certain aspects of sentence structure (e.g. number of words, placement of
"or" within the sentence) increase the difficulty of the predictive task. Based on these findings, we
conclude that, while this model represents a substantial effort to model inference strengths, further
improvements are required to capture the high pragmatic complexity of "or." Several potential avenues
for future work are discussed.
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2 Related Work

Computational modeling of scalar inference judgments have only recently moved towards neural
network models, having historically centered around Bayesian statistical modeling. Furthermore, there
has been no neural network modeling of scalar inference judgments with respect to “or” specifically.
Below, we first describe recent work in scalar inference modeling. Next, we describe relevant
linguistic research around the pragmatic behavior of “or” and its implications for computational
modeling.

2.1 Previous Work in Computational Modeling of Scalar Inference

Previous work in predicting scalar inference has relied on Bayesian game-theoretic models of
pragmatic reasoning (i.e. using Bayesian inference to recover speakers’ intended meaning). Popular
models include the rational speech act (RSA) model of language understanding, which aims to
formalize the social inference view of pragmatics by modeling communication as a signalling game
between the speaker and listener with Bayesian statistics as described in [2]. For instance, [3] uses
RSA modeling to predict the scalar inference of “some” and find a good fit between model predictions
and human judgments. [4] similarly uses RSA to model speaker uncertainty with respect to scalar
inference judgments of “some” and finds the model successfully predicts listener interpretations of
utterances.

However, though Bayesian models are successful in using speaker expectations to predict pragmatic
inferences, they are limited in that they require manual specification of salient linguistic cues and
specification of a finite set of possible inferences. For that reason, we refer to [5] for our predictive
task. The authors proposed an LSTM-based sentence encoder as an alternative model of pragmatic
reasoning, as neural network models do not suffer from these same limitations – they are able to
make predictions for arbitrary utterances and do not require manual feature specification. The authors
found that their model successfully learned linguistic features to predict subtle differences in scalar
inferences with high accuracy (r = 0.78).

As previous neural network modeling of scalar inference has mostly been limited to the pragmatic
behavior of “some,” our task is a logical next step in evaluating the broader applicability of neural
network models to pragmatic inference predictions. In expanding the project to “or,” we reference
both the performance benchmarks in [5] for “some” and the linguistic analysis of the pragmatic
behavior of “or” in Section 2.2 below to inform our expected baseline performance.

2.2 Pragmatic Judgments of “Or” Utterances

Though “or” is often treated as a simple logical disjunction which can be pragmatically enriched to
yield exclusivity vs. inclusivity, linguistic literature suggests that “or” in fact takes on as many as
six additional pragmatic functions, yielding a total of seven distinct pragmatic roles. Besides (1) the
logical/inclusive function and (2) the exclusive function, the following six pragmatic roles have also
been distinguished for “or”:

(3) a correction or “metalinguistic disjunction,” in which the second disjunct replaces the first [6] –
e.g. “He likes cake, or at least he likes sweet things”;

(4) an equivalence relation wherein two synonymous terms are conjoined, usually with one unfamiliar
term being clarified by a relatively more common one [7] – an example from the corpus: “Sole or
flounder is real good”;

(5) an imperative [8], e.g. “Sit down or else!”;

(6) a conjunctive [8], e.g. “They like to be able to attract the Einsteins, or the Professor Chou. . . ”;

(7) a cue for uncertainty [8], e.g. “Oh I don’t know. She went to the movies or had a drink with her
friends”; and

(8) preference [8], e.g. “Let’s go for a drink or. . . let’s take a nap.”

The diversity of pragmatic functions that “or” can take on presents a challenge to computational
models seeking to predict its inference judgments. We seek to evaluate the applicability of neural
network modeling towards this more challenging task relative to historical work done for “some,”
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with the intention of contributing towards a more general picture of the feasibility of neural networks
to predict pragmatic judgments.

3 Approach

We base our approach on the model proposed by Schuster et. al. (2019) [5] in their study of scalar
inference. In their tradition, the goal was to predict the mean inference rating of a sequence of
words. We embed the words using pre-trained embeddings - selecting between GLoVE, BERT, or
BERT-large- which are then passed through a bidirectional LSTM, with outputs mapped to a score
between 0 and 1. Self-attention and dropout functionality are also implemented with usage varying
across experiments.

Figure 1: Model architecture [5]

The baseline model uses 100-dimensional GloVe for the word embedding model and does not include
the self-attention layer; the model directly passes the output representation from the biLSTM through
the sigmoid activation to obtain the scaled outputs.

We compare the performance of the baseline model (GloVe without attention) with four additional
variants: GloVe with attention, BERT with and without attention, and BERT-large with and without
attention.

To that end, we repurpose the model code from [5] [9] to accommodate our dataset. We begin by
modifying the data preprocessing pipeline. The original model code considers linguistic cues not
relevant to the “or” task, such as the presence of partitives, and did not perform optimal sentence
preprocessing. We write scripts to preprocess each sentence, truncating target utterances, and
transformed the dataset to have three features: a unique example identifier, preprocessed sentence,
and mean rating.

In the post-processing phase, we additionally modify the source implementation to drop duplicate
sentences, and to create separate directories to store train/test data and results. For each of the
model variants, we perform hyperparameter tuning (modifying the learning rate, number of layers,
maximum sequence length, number of hidden dimensions, dropout, and cross-validation) and assess
performance.

4 Experiments

Data: The dataset was collected by Degen (2015) [10] and consists of 1,244 unique sentences.
Participants from Amazon’s Mechanical Turk were given paragraphs with ten sentences each. The
last sentence (e.g. sentence (1a)) of each paragraph was highlighted and featured a single disjunction.
Participants were then given a comparison sentence (1b), which was identical to (1a) with the addition
of “but not both” concatenated to the end of the original disjunction:

1. (a) So I like things like Golden Girls or Cheers.
(b) So I like things like Golden Girls or Cheers but not both.

Participants were asked to rate how similar in meaning the comparison sentence was to the original
sentence on a sliding scale of 0-1, with 0 being completely different (inclusive or) and 1 being the
same (exclusive or).
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Evaluation method: We assess the performance of the baseline model and its improved variants by
evaluating the correlation coefficient r of its predictions with the actual mean human inference ratings
for each utterance. Specifically, we use 5-fold cross validation, and average the r across across each
fold to get the mean validation r. Lastly, for the best performing model from each embedding type,
we evaluate performance on a held-out test set consisting of 372 sentences (30%) from the original
data.

We evaluate our performance relative to the performance benchmarks in [5] for “some” and expect
our baseline performance for the prediction of “or” to be significantly worse than that of the “some”
paper. This is because we expect the “or” task to be significantly harder: Whereas “some” serves
very limited linguistic functions, “or” plays as many as 8 different discourse functions, some of
which include: logical/inclusive (“do you want something to eat or drink”), exclusive (“either x or
y”), corrections [6], equivalence [7], and imperative [8]. The dataset reflects this higher complexity
(Figure 2). Whereas the “some” dataset saw more extreme judgments of inference strength (indicating
high human certainty in their judgments) resulting in a more bimodal distribution, the “or” dataset saw
a more unimodal distribution with ratings clustered near 0.5, indicating high human uncertainty in the
correct interpretation of “or”. Given higher human uncertainty, we also expect worse performance
and lower correlation of our model’s predictions to human inference ratings.

Figure 2: Distribution of inference rating in dataset [1]

We therefore define a “satisfactory” performance to be an r of 0.2 - 0.3, due to the relatively higher
complexity of the linguistic task and higher human uncertainty reflected in the dataset.

Experimental details: After the data preprocessing described in “Approaches,” we ran the previously
described six model variants (3 embeddings, each with and without attention).

The LSTM models are implemented in PyTorch, and we use 5-fold cross-validation on the training
data to optimize the following hyperparameters, comparing all combinations of each parameter (see
Figure 3): Word embedding model: 100d GloVe, 768d BERT-base; and Dropout rate in LSTM: 0,
0.3, 0.5. For each model we maintain a hidden layer size of 100 neurons. Training is optimized
with Adam, using a learning rate of 0.001 (with a decay rate of 0.8 starting at epoch 20) to minimize
the mean-squared-error loss function. All models are trained on CPU (no CUDA) for 800 epochs.
Training time was 33 minutes per fold.

5 Results and Analysis

Figure 3: Hyperparameter Tuning Combinations
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Figure 3 provides a summary of each model and hyperparameter combination that was implemented.
As seen above, the best validation r is approx. 0.35, which is well above the expected r = 0.2 - 0.3.
Analyzing the data further, we see that BERT without attention strictly outperforms all other models,
while GloVe performs strictly worse than all other models. The relatively lower performance of
GloVe was expected and mimics the results from Schuster et al.

We attribute the superior performance of BERT versus BERT-large to the possibility that BERT-large
(as an inherently more complex embedding style) may have been more prone to overfitting, resulting
in lower validation and test r’s. The same argument regarding overfitting can be made for why
including self-attention tended to hurt performance. Although we implemented various techniques
to combat overfitting (adjusting learning rate via Adam, decreasing the number of layers, changing
dropout rate, and changing the number of layers), performance did not increase - suggesting potential
for additional hyperparameter tuning in future research.

5.1 Regression Plots - Distribution of Predictions

Figure 1: GloVe, BERT, and BERT-Large Ratings Distributions

To better visualize the correlations between our model and human predictions, for each of our three
embeddings, we map the mean human ratings of "or"-exclusivity for each sentence against the
model’s prediction. We also plot the distribution of human ratings (top bar graph) and the distribution
of the model’s predicted ratings (sideways bar graph) for each.

In the case of GloVe (left), we observe a correlation of 0.28, and see that the distribution of predictions
skews left/lower (< 0.5) than the distribution of human ratings. For BERT (center) and BERT-Large
(right), we observe correlations of 0.35 and 0.30 respectively, and note that, while the distribution of
predicted ratings skews slightly more left than the distribution of actual ratings, they generally appear
to capture the shape of the distribution of human ratings.

5.2 Regression Plots - Macroscopic Changes in Correlation during Training

Figure 2: GloVe, BERT, and BERT-Large Ratings from Epoch 10 -> Best Epoch

Continuing with the visualization process, we map the scatter plots of model prediction correlation
against human ratings at two epochs: epoch 10 (representing the early stages of training), and the
best-performing epoch (with the highest correlation) for each model. The highest-correlation epochs
are 10, 500 and 210, for GloVe, BERT, and BERT-Large respectively. These values are naturally
different because each embedding type learns idiosyncratically; but in each case, the correlations
increase until they reach an optimal value over time, indicating that the model is training correctly.
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5.3 Regression Plots - Movement of Individual Data Points During Training

Figure 3: GloVe, BERT, and BERT-Large Ratings from Epoch 10 -> Best Epoch

The lollipop scatterplots in Figure 3 above trace the movement of each datapoint from epoch 10 to
the highest-correlation epoch for each model, as mentioned in section 4.2.

For GloVe, we see that more centered predictions from epoch 10 tend to get pulled downwards by
later epochs (i.e. notice that the datapoints on the lower outskirts of the scatterplot are all blue dots,
i.e. from epoch 500). This suggests that the model errs on the side of lower inclusivity-exclusivity
ratings over time.

For BERT and BERT-Large, we see that more extreme (and incorrect) predictions from epoch 10
tend to get reigned in by later epochs to be closer to center (e.g. notice that the points on the upper
outskirts of the scatter plot tend to be from epoch 10, and are pulled closer to center by epoch 210).

5.4 Qualitative Analysis

For each of the embedding types, we sorted and examined individual sentences from the corpus that
produced the highest differences between predicted and human ratings. For all three embeddings, the
most clear trend was that each of the most highly-missed sentences was either significantly longer or
shorter (in many cases by more than 50%) than the mean sentence length, which was approximately
24 tokens. This observation may be explained by the fact that whereas longer sentences may present
too much linguistic noise, shorter sentences conversely tend to rely more on world knowledge (e.g.
recognizing "half empty or half full" as presenting two mutually exclusive disjuncts) given the relative
lack of linguistic cues.

Moreover, in each of these sentences, the placement of "but not both" (which was removed in the
sentence pre-processing phase) was almost always towards the very end of the sentence. This might
indicate that the models might be focusing too much on noise earlier in the sentence, hindering the
prediction of exclusivity at the end of the sentence.

With regard to the eight linguistic functions of "or" outlined in [1] (inclusive, exclusive, corrections,
equivalency, imperative, conjunction, uncertainty, and preference), the latter six do not appear to
be at cause for significant model error. However, it is worth noting that the models tend to miss on
cases where the human ratings are quite extreme (i.e. cases in which the "or" is heavily inclusive or
heavily exclusive). In these cases, the models tend to make predictions closer to 0.5, indicating that
the models have not yet learned to pick up on cues for extreme inclusivity or exclusivity.

Lastly, four out of the top five highest-missed sentences by BERT-Large were also missed by BERT,
GloVe, or both, indicating that these particular sentences might have additional cues (other than
abnormal sentence length and placement of "but not both") that make rating prediction challenging.

6 Conclusions and Future Work

In this work, we examine the ability of biLSTM-based sentence encoders to predict human inclusivity-
exclusivity inferences. We optimize for hyperparameters and experiment with three different pre-
trained embeddings (GloVe, BERT, and BERT-Large) as well as attention, testing the best performing
model for each pre-trained embedding. We find that BERT embeddings with high dropout and
without attention perform best, albeit still with an accuracy significantly worse than that of the “some”
baseline (r = 0.35), as expected, owing to the increased complexity of the predictive task. From our
quantitative and qualitative results, we conclude that the current model is suboptimal for utterances
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with high pragmatic complexity like “or,” and therefore not yet generalizable to scalar inference
judgments broadly beyond the scope of “some.”

Note that this conclusion is tempered by the high uncertainty and variance in human inference
judgments reflected in our dataset. Future work towards confirming our results would begin with
re-collecting data on the same utterances with a new set of participants to assess how predictive the
first dataset is of the second, i.e. how consistent human inference judgments are for each of the test
sentences across multiple trials.

Future avenues of research would investigate the impact of the presence of specific syntactic, semantic,
and pragmatic features on prediction correlations, for example by identifying clusters based on the
distinct linguistic functions of “or” using unsupervised learning and observing whether the model
better learns certain linguistic functions over others. Future work could utilize these observations in
better harnessing these relevant linguistic features to maximize prediction correlations.
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