
Context-Based Models for Sarcasm Detection
Stanford CS224N Custom Project

Nicholas Benavides
Department of Computer Science

Stanford University
nbenav@stanford.edu

Angelo Ramos
Department of Computer Science

Stanford University
angelor@stanford.edu

Mentor: Rohan Sampath | External Collaborators: N/A | Sharing Project: No | Grading Option: 3

Abstract

Detecting sarcasm is one of the most essential mechanisms in understanding casual
language and discourse, considering that a misunderstanding of sarcasm leads
to a fundamentally opposite takeaway from a piece of text. Previous work on
sarcasm detection has identified the benefit of using contextual information about a
comment, its author, and/or the forum it is shared in to build more accurate models.
In a previous course project, we identified the benefit of including context in the
embeddings via ELMo embeddings and in the model via LSTMs. In this project,
we extend our previous work and assess additional ways that textual context can be
incorporated into our sarcasm detection models. We extended our previous models
with additional LSTM/GRU layers, an extra linear layer, and dot-product attention.
Our findings indicate that attention mechanisms in conjunction with contextual
embeddings like ELMo can improve model performance without substantially
increasing training time. Compared to our baseline models, we saw gains with
attention when training on at least 50,000 examples, meaning that these more
complex architectures are only beneficial with a relatively large dataset.

1 Introduction

Sarcasm detection is a difficult problem due to the highly contextual nature of sarcastic statements.
Detecting sarcasm is also challenging for humans, since it is very difficult to identify whether a
comment is sarcastic without context about the author and the circumstances in which the remark
was made. The increased popularity of social media platforms, online forums, blogs, and similar
channels have led to an increase in informal and sarcastic text across the internet. The ability to detect
sarcasm more accurately is critical to understanding and enabling sentiment analysis for text from
these sources. Due to the difficulty of detecting sarcasm from text alone, much of the previous work
in this area has focused on leveraging background information about the author [1] or forum [2] as
well as novel architectures to better detect the various contextual dependencies and latent meaning.

We hypothesize that, given more recent developments in NLP such as deep contextualized word
embeddings and attention mechanisms, there are still gains to be realized from incorporating additional
ways to capture context from text into sarcasm detection models. Based on both intuition and prior
work, we know that understanding context is critical to accurately detecting sarcasm. In some longer
sentences or comments, it’s possible that the sarcastic portion of the remark appears at the end as a
comedic punchline. For example, many Reddit comments begin with phrases that could be perceived
as non-sarcastic before ending with a phrase that is clearly sarcastic. The sarcastic comment "if there’s
one thing in this world that merits truly serious levels of obsession to the point of sending anonymous
bullying messages to people online whenever they disagree with you about it, it’s **multiplayer
videogames**" is sarcastic because of the heavy emphasis on multiplayer video games at the end.
In other cases, the ordering of several words can change the likelihood of whether a comment is
sarcastic or not. For example, the sarcastic Reddit comment “that’s totally not going to look like a

Stanford CS224N Natural Language Processing with Deep Learning

beard in 15 years” sounds much less sarcastic when rephrased as “that’s not going to totally look
like a beard in 15 years.”

While some research has found success in incorporating context via information about a comment’s
author or forum a comment is shared in, these approaches do not fully utilize the contextual in-
formation they can draw from the text itself. In this paper, we experiment with various ways to
capture additional context from the text through multiple LSTM/GRU layers, an additional layer, and
dot-product attention. We also train our models on training sets of various size to understand how
much data is required to realize the gains of these more complex neural architectures. Our results
show that models utilizing attention performed the best and outperformed our baseline models, but
these gains were only realized when the training set size surpassed 50,000 examples.

2 Related Work

Previous sarcasm detection studies tend to trend similarly in their focus and in their tasks. Kolchinski
and Potts [1], Hazarika et al. [2], and Ilic et al. [3] all achieve state-of-the-art or near state-of-the-art
results. However, their approaches do have some key differences that are worth noting. Kolchinski
and Hazarika et al.’s papers use very different architectures and features to address the same task.
First, Hazarika et al.’s CASCADE model is built on a CNN, while both of Kolchinski’s models
extend a bidirectional RNN with GRU units. These models capture context either by convolving
over groups of words or by the sequential nature and memory of the GRU units. Both Hazarika
et al. and Kolchinski are focused on examining the role of background information in sarcasm
detection. Hazarika et al. uses a wealth of contextual information, namely user embeddings and
forum embeddings, to learn more complicated relationships about authors’ uses of sarcasm in various
situations. In contrast, Kolchinski takes a much simpler approach, using either a Bayesian prior to
model an author’s propensity for sarcasm or an embedding vector to encode contextual information
about the author. Despite not using forum embeddings, Kolchinski’s model performs comparably
but slightly worse than Hazarika’s model, suggesting that Hazarika’s additional embeddings yield
only incremental gains. Despite the gains that author and forum embeddings yield, these approaches
suffer from the cold-start problem, where either an author or a forum is new, and the model has very
little or no data about their tendencies.

In contrast, Ilic et al.’s model differs significantly from both Kolchinski and Hazarika et al.’s models
because she does not encode any information about the author or forum. Instead, she takes a character-
based approach that utilizes character-level vector embeddings for words through ELMo. However,
Ilic et al.’s architecture does have some similarities with Hazarika et al. and Kolchinski. Like Hazarika
et al., Ilic et al. relies on CNNs to generate the contextualized embeddings, although her model
combines the character-level representations into a word-level representation. Similar to Kolchinski’s
model, Ilic et al.’s model passes the embeddings to a bidirectional RNN, although she uses LSTM
units instead of GRU units. Comparing the performances of these three models on the SARC dataset,
it appears inconclusive whether Ilic et al.’s character-based approach is superior to the author-focused
approaches. Although Ilic et al. demonstrated the power of ELMo embeddings with a character-level
model, previous work has not explored ELMo embeddings with a word-level model, and no work
has examined the effects of combining deep contextualized embeddings with attention for sarcasm
detection.

More recently, Peters et al. [4] developed a new form of contextual word embeddings called
Embeddings from Language Models, commonly known as ELMo. ELMo is a deep, contextualized
method to represent words that models both the complex aspects of a word’s usage and how a word’s
uses vary in different linguistic contexts. The ELMo word vectors are learned functions derived
from a deep bidirectional LSTM (BiLSTM) language model trained on a large corpus. Unlike other
embedding methods, each token’s representation is determined by the whole input sentence, which
allows ELMo embeddings to capture more information about the context the token was used in. In
addition, the model makes use of sub-word information through the use of character convolutions.
ELMo embeddings are not only unique, but they also have been found to improve performance
on a variety of natural language understanding tasks, and we think that using these embeddings in
conjunction with other methods of capturing context can lead to performance gains.

2

3 Approach

3.1 ELMo Embeddings

To generate ELMo sentence embeddings, we pass tokenized sentences into AllenNLP’s ElmoEmbed-
der [5], which for each word outputs a 1024-dimensional embedding at each of the 3 model layers of
the ELMo model. We then take the embedding from the last layer for each word, which contains
the most contextual information, and average the word embeddings from a sentence to obtain a
sentence embedding. This approach differs from our previous course project, where we summed
word embeddings to generate a sentence embedding. We chose to average the word embeddings as
opposed to summing to account for differing sentence lengths. Summing word embeddings would
introduce high variance in our sentence embeddings, making it harder for our model to properly learn
weights. We then concatenate a pair of sentence embeddings and pass this 2048-dimensional input to
all of our models. We wrote the code to embed tokenized sentences with ELMo, transform the word
embeddings into a sentence embedding, and save the results for later use. The code for processing
the raw text comments into a formatted dataset that we fed into the ElmoEmbedder came from this
repository.

3.2 Baselines

For our baseline models, we trained one model for each type of RNN cell, LSTM [6] and GRU[7].
The baseline models contain a single bidirectional LSTM or GRU layer followed by a linear layer,
which outputs a tensor of length 2 for each example. The predicted class for each example corresponds
to the index of the output containing the higher value. The baseline models were inspired by the
BiGRU model in [1] and our previous course project. The baseline model architectures and training
loop were inspired by this repository.

Refer to the "Baseline BiLSTM" diagram in Figure 1 on the following page for a diagram of the
baseline model architecture. The embedding dimension of 4 in the diagram is just for simplicity of
the figure, and all of our models have a 2048-dimensional input. Similarly, the number of LSTM
units and the dimensionality of the LSTM representations do not reflect the dimensionality of our
actual models and are chosen to simplify the diagrams.

3.3 Multiple RNN Layers

Our baseline models make use of a single RNN (LSTM/GRU) layer. In general, RNN layers are
useful in capturing context due to their sequential nature. Through stacking multiple RNN layers, our
models should learn a greater number of parameters and capture additional context in comparison to
the models that only use a single RNN layer. We extended code from our previous course project to
implement these models. Refer to the "Multiple RNN Layers" diagram in Figure 1 on the following
page for a diagram of the model architecture.

3.4 Additional Linear Layer

Our baseline models use only a single linear layer after the RNN layer. In doing so, the baseline
models pass the output from the RNN (LSTM/GRU) directly to the linear output layer that determines
the final classification. By adding an additional linear layer in between the RNN and the linear output
layer, we hope to capture more information as we transform the RNN outputs to a classification
as well as enable larger RNN hidden sizes. We extended code from our previous course project to
implement these models. Refer to the "Additional Linear Layer" diagram in Figure 1 on the following
page for a diagram of the model architecture.

3.5 Attention Layer

With a heavily context-dependent task like sarcasm detection, certain segments of an input sentence
may be more relevant to determine sarcasm than other parts of the input. Adding attention to our
models allows them to learn these relationships and to place more weight on the most critical portions
of the input. For our models, we implement dot-product attention[8], which learns weights for
different positions of the input and computes the dot product of the weights with the LSTM/GRU

3

https://github.com/kolchinski/reddit-sarc
https://github.com/kolchinski/reddit-sarc
https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/bidirectional_recurrent_neural_network/main.py

output. The attention layer learns a weight vector α. It takes as input a hidden RNN state, which
we will denote as hi, computes the dot product of the weights with the input ei = αThi for each hi,
passes the resulting attention scores e1, ..., en where n denotes the number of hidden states, through
a softmax function to normalize their values, and then updates the vector α via backpropagation. We
extended code from our previous course project to implement these models, and we modified this
code to implement the attention layer. Refer to "Dot Product Attention" diagram in Figure 1 below
for a diagram of the model architecture.

Figure 1: Model Architectures

3.6 Other Modeling Information

For all of our models, we used binary cross-entropy loss as our loss function, given by the formula
− 1

N

∑N
i=1 yi ∗ log(p(yi))+ (1− yi)∗ log(1−p(yi)), where yi is the true label for an example, p(yi)

is the predicted label, and N is the total number of examples. We chose the Adam optimizer [9] and
used a batch size of 32 for all of our models.

We employed dropout at various locations in our models, but we included at most 1 dropout layer in
any particular model. We did not use dropout with our baseline models. For the models with multiple
RNN layers, the dropout layer sat in between the first and second RNN layers. For the models with
an extra linear layer, the dropout layer followed the extra linear layer. For models with attention, the
dropout layer followed the attention layer.

In terms of code, we modified the training script from our previous project to handle multiple model
architectures, and we improved the code reusability and readability by decomposing the train/test
split and error analysis portions of the training script into a utils file.

4 Experiments

4.1 Data

We used the Self-Annotated Reddit Corpus (SARC) dataset [10], a corpus of 1.3 million sarcastic
statements. More specifically, we used the balanced version of the r/main dataset, which contains
257,082 comments from a variety of subreddits (forums), half of which are sarcastic. The SARC
dataset is constructed such that each example in the balanced dataset contains two comments, one
that is sarcastic and one that is non-sarcastic. Thus, the input to our models are concatenations of two
sentence embeddings, and the output is a binary value where a 1 represents that the first sentence is
the sarcastic one, and a 0 represents that the first sentence is the non-sarcastic one. We decided to
keep the input as a pair of sentences so that we could directly compare our models with others that
have used the SARC dataset for sarcasm detection.

4

https://gist.githubusercontent.com/MLWhiz/1ac0841f0333a97396d300b8f4c247c9/raw/aa352c54d00f801ea1579790652ff8ebb160b01b/pytorch_attention.py
https://gist.githubusercontent.com/MLWhiz/1ac0841f0333a97396d300b8f4c247c9/raw/aa352c54d00f801ea1579790652ff8ebb160b01b/pytorch_attention.py

4.2 Evaluation method

To evaluate our models, we used the F1 score, which combines both precision and recall. Similar
to other sarcasm detection papers, we compute a macro-averaged F1 score. To compute the macro-
averaged F1 score, we first compute the F1 score for both the positive and negative classes of
examples. From there, the macro-averaged F1 score is the average of the 2 F1 scores.

4.3 Experimental details

For each of the model types, we trained 25 models with different combinations of hyperparameters.
For each of the baseline models, we conducted a single training run of 25 models with no dropout.
For each of the challenger models, we conducted 2 training runs, 1 with no dropout and 1 with a
dropout probability of 0.2. The hyperparameters varied were GRU/LSTM hidden sizes, the number of
GRU/LSTM layers, the extra linear layer size (if applicable), the number of epochs, and the learning
rate.

The number of LSTM/GRU layers was fixed for a given model type and the dropout parameter was
fixed for a given training run, meaning that there were 36 possible combinations of the remaining
hyperparameters for models that did not include the extra linear layer. By training 25 models, we
were able to explore the majority of our space of hyperparameters. The training time for runs of
models that did not include the extra linear layer was approximately 4 hours on the Azure NV6 virtual
machine.

For the models with an extra linear layer, we also fixed the learning rate to be 0.001 since that had
been optimal with the majority of the previous models and reduced the number of hyperparameter
combinations from 144 to 48, which still allowed us to explore a majority of the space with 25 models.
To select the size of the extra linear layer, we only sampled from sizes that were smaller than the
LTSM/GRU hidden size, since we generally want the dimensionality of deeper layers to be smaller
than previous layers. The training time for runs of these models took approximately 6 hours on the
Azure NV6 virtual machine.

Once we determined which models outperformed our baselines, we ran another set of experiments
with the best models and our baseline models to assess the amount of training data required to realize
the gains from our best models. Using the optimal hyperparameters for each model type, we trained
each model on 5k, 10k, 25k, 50k, and 100k examples and recorded the macro-averaged F1 score on
the dev set.

5 Results

The results of our first set of experiments are shown in Table 1 below:

Table 1: Best Models of Each Type

Dev F1
Score

RNN
Hid-
den
Size

Linear
Hid-
den
Size

RNN
Layers

Epochs Learning
Rate

Dropout

Baseline LSTM 0.723 256 N/A 1 20 0.0001 0
Baseline GRU 0.715 128 N/A 1 10 0.001 0
2-Layer LSTM 0.717 256 N/A 2 10 0.001 0.2
2-Layer GRU 0.707 512 N/A 2 10 0.001 0.2
LSTM w/ extra Linear Layer 0.715 512 128 1 10 0.001 0.2
GRU w/ extra Linear Layer 0.723 512 128 1 10 0.001 0.2
LSTM w/ Attention 0.735 256 N/A 1 10 0.0001 0.2
GRU w/ Attention 0.737 512 N/A 1 20 0.0001 0

5

5.1 Sentence Embedding Method

Retraining our baseline models, which were the best models from our previous project, with our new
ELMo embedding approach allowed us to compare the performance of summing word embeddings
with averaging word embeddings. In our previous work, we obtained an F1 score of 0.689 with the
baseline LSTM model. After retraining, both the LSTM and GRU baseline models significantly
outperformed our previous model, indicating that averaging word vectors to generate a sentence
embedding is a superior approach to summing word vectors. We thought that the new approach
would perform better, but the difference here was greater than we expected.

5.2 LSTM vs GRU

Based on our results, it’s inconclusive whether LTSM or GRU units are better for sarcasm detection.
LSTM outperformed GRU in the baseline models and 2-layer RNN models, but performed worse
than GRU on the models with an extra linear layer and was comprabable on the attention models.
We expected that the LSTM models would perform slightly better than GRU since its additional
gate allows it to save more contextual information between states, but our results indicate that the
performance difference between the two is not significant.

5.3 Multiple LSTM/GRU Layers

The models with 2 RNN layers performed worse than the baseline models, which is worse than we
expected. Given these results, We suspect that this architecture may be too complex for this task
or that we don’t have enough data for the second RNN layer to learn useful representations of the
comment pairs.

5.4 Extra Linear Layer

For the models with the extra linear layer, the GRU model outperformed the GRU baseline, but the
LSTM model performed worse than the LSTM baseline. We expected that the extra linear layer
would help to transform the RNN outputs to the classification and potentially enable a larger RNN
hidden size. The extra linear layer did enable a larger RNN hidden size for both the LSTM and GRU
models, but the performance gains were only observed for GRU. Thus, these results show that the
additional layer can improve model performance but likely isn’t the best solution.

5.5 Attention

The models with attention performed the best, and they significantly outperformed both baseline
models. We expected that attention would best capture context because it would learn what parts of
the input are most important, so these results are not surprising. Based on our results, attention seems
like a promising method to extract more contextual information from text for sarcasm detection.

5.6 Training Set Size

Table 2 below displays the results of our second set of experiments, where we trained our baseline
models and best models on varying amounts of training data.

Table 2: Best Models Baselines - F1 by Number of Training Examples

Dev F1
(Full)

Dev F1
(100k)

Dev F1
(50k)

Dev F1
(25k)

Dev F1
(10k)

Dev F1
(5k)

Baseline LSTM 0.723 0.722 0.703 0.699 0.678 0.654
Baseline GRU 0.715 0.705 0.689 0.672 0.666 0.662
LSTM w/ Attention 0.735 0.721 0.709 0.693 0.679 0.650
GRU w/ Attention 0.737 0.724 0.706 0.689 0.680 0.649

These results were more or less what we expected. We see that all of the models improve as they
are trained on more data. At lower training set sizes, the differences between the baseline models

6

and the attention models are negligible. With the LSTM models, we start to see gains from attention
as the training set size approaches the full dataset. For GRU, we see substantial improvements in
performance over both baseline models as the training set surpasses 50,000 examples.

6 Analysis

6.1 LSTM vs GRU

In our error analysis, it was clear that the LSTM baseline model performed better on longer sentences
in comparison to the GRU baseline model, which tended to incorrectly classify longer sentences.
This makes sense because LSTM models are designed to capture long-term memory, which allows
the model to capture context between words that are positioned far apart within the same sentence.
However, GRU models are less performant in capturing long-term context within a sentence, leading
to declining performance as sentence length increases. For example, one comment that GRU
incorrectly classified as sarcastic was "i like how each of the teams have a trophy from their previous
round cavs have a piston on the sword hawks are carrying a celtics hat..." The total sentence length
of this incorrectly classified comment was 70 words, demonstrating how the GRU baseline model
struggles to correctly classify longer sentences. To further investigate this difference in performance,
we randomly selected 50 comments that were incorrectly classified as non-sarcastic by each of our
baseline models and computed the average word lengths of these comments. The average sentence
length across these 50 incorrectly classified comments for the GRU baseline model was 15.8, as
opposed to a 9.9 average sentence length for the LSTM baseline model. Based on these average
lengths, we can also conclude that the GRU models perform better on shorter sentences, which makes
sense given a lesser need for long-term memory on these examples.

6.2 Multiple LSTM/GRU Layers

Examining errors produced by the model with multiple GRU layers, we find that a common failure
mode is when both the sarcastic and non-sarcastic comments have fewer than 7 words. Examining
50 misclassified examples, 11, or 22%, have this property. This compares to 6 out of 50 randomly
selected errors, or 12%, from the baseline GRU model. Similarly, we estimate that 20% of errors
from the model with multiple LSTM layers and 14% of errors from the baseline LSTM model have
this characteristic, each of which were based on a random sample of 50 errors. One such example of
this includes the non-sarcastic comment "i’m tony, tony, tony, tony" and the sarcastic comment "not
photoshopped at all". While a human would likely predict the second comment to be sarcastic given
it’s reference to photoshop, it appears that the model fails to distinguish between the two comments
due to their short length. It makes sense that models with stacked RNN layers would have more
errors of this type because these pairs of comments do not have much context to extract, making the
model overcomplicated for these kinds of examples.

6.3 Extra Linear Layer

In our error analysis of our models that used an extra linear layer between the RNN layer and the
linear output layer, we noticed that a common type of error is when the difference in sentence length
between the sarcastic comment and the non-sarcastic comment is 20 words or more. For the LSTM
model with an additional linear layer, we found that 7 out of 50 (14%) incorrectly classified examples
had a sentence length difference of at least 20 words. In comparison, our baseline LSTM model
only had 1 out of 50 (2%) incorrectly classified examples exhibited this sentence difference property.
Furthermore, we also found that among the 7 misclassified examples with a sentence length difference
of 20 words or more, the LSTM model with an additional linear layer tended to classify the longer
comment as the sarcastic comment. One such example of this error type is the comment "i totally
understand what they are saying!, which has a sentence length of 7. Although the comment would be
likely classified as sarcastic by a human, the LSTM model with an extra linear layer instead classifies
the corresponding non-sarcastic comment, which had a significantly longer sentence length of 29,
as sarcastic. This classification behavior suggests that the extra linear layer is learning weights that
skew the classification of longer sentences towards a sarcastic classification.

7

6.4 Attention

By generating confusion matrices for both of our attention models and baseline models, we gained a
better understanding of how the models were classifying the data compared to the ground truth. The
LSTM baseline predicts a majority of examples to be sarcastic, resulting in higher true positives and
higher false positives. On the other hand, the GRU baseline predicts a majority of examples to be
non-sarcastic, leading to higher true negatives and higher false negatives. Both attention models had
better balance in their predictions, which ultimately led to better performance. The LSTM model with
attention had a slight bias for false negatives over false positives, and the GRU model with attention
had a slight bias for false positives over false negatives.

Figure 2: Confusion Matrices - Attention vs Baseline (x-axis = predicted label, y-axis = true label)

We also found that models with attention did seem to outperform our baseline models for examples
where the sarcastic sentiment is largely concentrated within one portion of the sentence. One such
example is the sarcastic comment "lefties seem to forget that the rest of us don’t believe in affirmative
action and actually hire based on merit, not quotas or political correctness." In this sentence, the
sarcasm is defined largely by the beginning phrase of the sentence "lefties seem to forget that the rest
of us...", while the rest of the sentence can be interpreted as relatively serious and non-sarcastic. The
GRU baseline model incorrectly classified this comment as non-sarcastic, whereas the GRU model
with dot-product attention was able to correctly identify the comment as sarcastic. With attention,
the model learned to weight the beginning segments of a sentence more heavily when searching for
sarcasm, which allowed the attention-based model to successfully classify this sentence even though
sarcasm was only expressed at the beginning of the sentence.

7 Conclusion

In this project, we evaluated several approaches to extract additional context from text for sarcasm
detection, namely multiple RNN layers, an additional layer, and dot-product attention. We found
that the models with multiple RNN layers performed worse than our baseline models, models with
an additional linear layer outperformed the baseline for GRU units but not for LSTM units, and
that models with dot-product attention significantly outperformed the baseline models. We also
concluded that the gains produced by the attention models were only observed as the training set
size surpassed 50,000 examples. Our error analysis supported many of our original hypotheses and
identified common failure modes for models that underperformed.

This project has several limitations. First, we don’t know if the gains we received from attention would
be observed if we applied attention to the models that also use author or forum embeddings. Second,
the self-labeling of the dataset means that some comments labeled as non-sarcastic could indeed
by sarcastic, and this seems to be the case based on error analysis. Finally, due to computational
constraints, we were not able to conduct as expansive of a hyperparameter search as we would have
liked.

To further expand on our work, it would be interesting to explore the possibilities of training ELMo
end-to-end, which we didn’t attempt due to computation constraints for this project. We would
also be curious to try BERT embeddings, since they have performed better than ELMo in some
applications. Finally, implementing more complex attention mechanisms such as multiplicative or
additive attention to see if they yield even better results could be another interesting direction.

8

References
[1] Alex Kolchinski and Christopher Potts. Representing social media users for sarcasm detection.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
2018.

[2] Devamanyu Hazarika, Soujanya Poria, Sruthi Gorantla, Erik Cambria, Roger Zimmermann, and
Rada Mihalcea. CASCADE: contextual sarcasm detection in online discussion forums. CoRR,
abs/1805.06413, 2018.

[3] Suzana Ilić, Edison Marrese-Taylor, Jorge Balazs, and Yutaka Matsuo. Deep contextualized
word representations for detecting sarcasm and irony. In Proceedings of the 9th Workshop on
Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 2–7,
Brussels, Belgium, October 2018. Association for Computational Linguistics.

[4] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.

[5] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu,
Matthew Peters, Michael Schmitz, and Luke S. Zettlemoyer. AllenNLP: A deep semantic
natural language processing platform. In ACL workshop for NLP Open Source Software, 2018.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997.

[7] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078, 2014.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv e-prints, abs/1409.0473, September 2014.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. In
Proceedings of the 3rd International Conference for Learning Representations, San Diego, 2015.

[10] Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. A large self-annotated corpus for
sarcasm. In Proceedings of the Eleventh International Conference on Language Resources and
Evaluation, 2018.

9

	Introduction
	Related Work
	Approach
	ELMo Embeddings
	Baselines
	Multiple RNN Layers
	Additional Linear Layer
	Attention Layer
	Other Modeling Information

	Experiments
	Data
	Evaluation method
	Experimental details

	Results
	Sentence Embedding Method
	LSTM vs GRU
	Multiple LSTM/GRU Layers
	Extra Linear Layer
	Attention
	Training Set Size

	Analysis
	LSTM vs GRU
	Multiple LSTM/GRU Layers
	Extra Linear Layer
	Attention

	Conclusion

