
Effificent Language Modeling of Long-Term
Dependencies

Stanford CS224N Custom Project [OPTION 3: GRADED]

Manan Shah
Department of Computer Science

Stanford University
manans@stanford.edu

Abstract

The transformer architecture [1] has received significant research attention due
to its ability to effectively model word-level and global contextual dependencies
exclusively using self-attention, thereby enabling language models such as BERT
[2] to achieve state-of-the-art performance. However, the quadratic cost of attention
and linear memory cost per layer have severely limited the transformer to operate
solely on short sequences, a problem partially addressed by the reversible layers
and LSH attention proposed in the reformer [3]. In this work, we study and improve
properties of the reformer as a language model, introducing k-means clustering for
attention and connection tying in reversible layers to improve reformer complexity
and representational power. We evaluate our model on masked language modeling
as well as selected GLUE benchmarks, and we find that our modifications signifi-
cantly improve training times and model capacity. The methods presented in our
work are generalizable to other attention-based models and have the potential to
drastically improve the efficacy of long-term language dependency modeling.

Key Information: This is a custom project with mentor Hang Jiang and no external
collaborators; it is not shared with another course.

1 Introduction

The transformer architecture, first introduced in [1], dramatically disrupted the field of computa-
tional language modeling due to its sole use of self-attention as mechanism to effectively learn
representations from natural language without many of the drawbacks present in recurrent networks.
In particular, while recurrent models suffer from vanishing gradients in backpropagation and slow
training due to sequential processing of input sequences, transformers eschew the idea of recurrence,
instead learning global dependencies in sequences through attention mechanisms. As a result of this
unique approach for sequence modeling, transformers have been able to achieve remarkable paral-
lelism and generalizability, leading to their widespread adoption in language modeling frameworks.
In particular, BERT [2], a natural language model developed by Google in 2019, utilized a series of
stacked transformers in a bidirectional encoder-only framework designed with two tasks focused on
learning word and sequence representations. The conceptually simple nature of BERT alongside its
empirical success in obtaining state-of-the-art results on eleven GLUE [4] natural language processing
tasks cemented the importance of self-attention and the transformer architecture in the field of natural
language processing.

However, in spite of their success, transformers suffer from two significant limitations: (1) computing
attention on sequences of length n is an O(n2) operation, and (2) the memory of a model increases
linearly in its number of layers. These issues have limited transformer-dependent language models
such as BERT to operate on sequences of maximum 512 tokens, severely limiting their representa-
tional power and increasing model training times. Recently, the reformer [3] proposed modifying
attention with locality-sensitive hashing to address (1) and introducing reversible layers that perform

Stanford CS224N Natural Language Processing with Deep Learning



backpropagation without storing intermediate layer activations to address (2). Implementing these
adjustments allowed the reformer to generalize attention to thousands of tokens in an efficient manner,
thereby paving the way for larger and more efficient attention-based language models.

In this work, we aim to extend and improve properties of the reformer as part of a language model.
In particular, we (a) introduce k-means attention and reversible layer connection tying to enhance
the expressivity of the reformer while reducing its training time complexity, (b) conduct empirical
evaluation of the (original and modified) reformer’s performance as a building block in a masked
language modeling framework, and (c) perform empirical evaluation of our model on masked
language modeling as well as downstream predictions on a variety of GLUE tasks. We implement our
adjustments as augmentations to an existing PyTorch reformer implementation [5]; code is located at
https://github.com/mananshah99/reformer-pytorch.

2 Related Work

Since the conception of the transformer architecture in 2017, significant progress has been made
to overcome the quadratic cost of attention and generalize the attention mechanism to significantly
longer sequences. Much of this work has attempted to leverage the sparsity of weights in attention
layers (as in [6], [7], and [8]); in particular, [6] utilized sparse factorizations of the attention matrix to
reduce computational complexity from O(n2) to O(n

√
n). This method was further generalized by

[9], which learned context-dependent sparsity patterns in attention matrices to improve interpretability.
Promising work has additionally been conducted on reducing the memory cost of backpropagation due
to intermediate layer activation storing; taking cues from normalizing flow networks, [10] proposed
reversible residual networks that perform backward passes with constant memory complexity. Along
with attention-specific modifications, engineering optimizations such as gradient checkpointing and
model quantization [11] have shown promise in facilitating the training of deeper transformers with
larger context lengths, although these techniques remain limited in their scope and potential benefits
beyond thousand-token sequence lengths.

The reformer, leveraging developed intuition that the majority of tokens computed with dense
attention carry little weight, developed a hash-based attention mechanism further reducing attention
complexity from O(n

√
n) to O(n log n). It additionally replaced transformer residual connections

with reversible connections as in [10], obtaining O(1) memory complexity for additional layers and
allowing for more efficient language modeling of long-term dependencies. As a result, developing
augmentations to improve the speed and representational power of the reformer holds significant
promise for the advancement of sequence learning as a whole.

3 Approach

In this section, we detail our approach to improving the performance and representational power of
the reformer. We begin with an overview of the core attention and feedforward mechanisms exhibited
in the transformer and their adaptations in the reformer. We next focus on (1) our replacement of LSH
hash-bucketing with learned k-means to improve training times and model performance, and (2) our
introduction of a connection-tying term as part of the reversible layer framework to increase model
capacity and generalizability. As the reformer further reduces transformer memory complexity by
setting the query and key projections to be identical (so that Q = K), we adopt this notation where
necessary for the remainder of this work.

3.1 Background

In the transformer, attention is computed by first setting Q = XWQ,K = XWK , V = XWV where
all W matrices are projection matrices from the input space X ∈ Rl×d for sequence of maximum
length l. Attention, the only mechanism for learning contextual representations, is then computed as

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

Multi-head attention in [1] is simply a concatenation of multiple individual attention heads with a
linear projection to ensure dimensions are preserved. After computation of attention, outputs are

2



passed through a feed-forward layer composed of two linear layers and a rectified linear unit; in
particular, we have that

FeedForward(X) = ReLU(XW1 + b1)W2 + b2 (2)

Additionally, in the transformer architecture, both attention and feedforward layers are followed
by layer normalization and residual connections. As evinced by (1), the matrix product requires
quadratic time to compute, and as shown in (2) the memory required to store the activations in each
layer is linear in the number of layers of the transformer. The reformer attempts to resolve these
prohibitive constraints by introducing locality-sensitive hashing (LSH) attention and reversible layers.

LSH attention was primarily motivated by the recognition that the computation of attention is
heavily biased towards similar vectors (as their dot products are the largest). As a result, identifying
similar vectors and only computing attention between those vectors is a reasonable approximation
to overcoming the quadratic complexity of attention; doing so with LSH ensures sub-quadratic
identification of such vectors. In particular, the bucketing stage of LSH attention is performed by
fixing a random rotation matrix R and defining hash function h(x) = argmax([xR;−xR]); doing
so conforms to a known LSH scheme proposed in [12]. In order to minimize the probability of
similar items hashing to different buckets in this mechanism, the reformer performs multi-round
LSH attention with different hash functions (each associated with distinct rotation matrices). LSH
attention is subsequently performed in parallel for each round, and final buckets are obtained by
computing unions over all hashes. The attention mechanism used in the reformer subsequently
computes attention elementwise between vectors in the same hash buckets; the reader is referred to
Equations (3), (4), and (5) in [3] for further details.

Reversible layers, inspired by [10], were introduced in the reformer to overcome the linear memory
cost of (2). Whereas a normal residual layer performs a mapping x 7→ y, a reversible layer maps
(x1, y1) 7→ (y1, y2) so that the forward pass computes

y1 = x1 + F (x2) and y2 = x2 +G(y1)

which allows for layers to be reversed by subtracting the residuals. The reformer sets F = Attention
(1) and G = FeedForward (2), with layer normalization moved inside the residual blocks. This
computation eliminates the requirement of storing layer-wise activations; backpropagation is instead
performed according to Algorithm 1 in [10] by computing total derivatives in the reversed step.

3.2 Learned k-Means Attention

Our first proposed augmentation to the reformer focused on improving the expensive computation
of angular locality sensitive hashing across the sequence of queries/keys to obtain buckets for each
vector. In particular, while the hash-bucketing performed in the original reformer (detailed in Section
3.1) enjoys the theoretical guarantees of a locality-sensitive hashing schema, it requires repeated
hashing to reduce error probabilities below a desirable threshold. Furthermore, storing the rotation
matrix R and computing rotations for each vector is expensive; such costs may significantly slow
training times as well.

In order to improve upon this notion of hash-bucketing, we note that the hash buckets produced in
LSH hashing share similarities with clusters in key/query vector space. In particular, clusters in this
space perform analogous functionalities to buckets produced by angular hashing; while vectors in
the same cluster are similar in a suitable Euclidean norm, vectors in the same bucket are similar
componentwise. Taking advantage of these analogous concepts, we propose reducing the memory
complexity of hashing into n buckets by learning n k-means centroids within the set of L2-normalized
query/key vectors; normalization is essential to prevent increasingly large dot products. We further
randomly re-initialize m different clusters (one for each random rehash performed in LSH attention)
to reduce the probability of suboptimal starting points [13].

Our implementation stores a tensor of per-cluster means associated with the input set of key/query
vectors; at each training iteration, we compute clusters for each vector and reassign means according
to the canonical k-means approach. We assign final clusters according to the mode of the predictions
across all n random re-initializations. This iterative k-means approach allows us to provide stronger
guarantees on bucketing (an approximation ratio of O(log n) at maximum) in a learned manner as
opposed to the more time and memory-consuming operation of repeated random rehashing.

3



3.3 Reversible Layer Tied Connections

Our second proposed improvement to the Reformer focused on improving the representational power
of the reversible residual networks. The canonical reversible layer used in the Reformer performs a
forward pass on pairs of inputs/outputs (x1, x2) 7→ (y1, y2) as in the black portion of Equation (3);
our modifications are highlighted in red.

y1 = x1 + F (x2) +H(x1, x2) and y2 = x2 +G(y1) (3)

In particular, the addition of a “connection tying” term H(x1, x2) allows for operations more
complex than simple summations to learn connections between the vectors, thereby increasing
the representational complexity of the reversible networks. In accordance with Equation (4), we
additionally adjusted the reversible residual backpropagation algorithm to express the total derivatives
of x1 and x2 (represented as x1 and x2 respectively) and the weight updates of H as

x2 = y2 +

((
∂F

∂x2

)T

+

(
∂H

∂x2

)T
)(

y1 +

(
∂G

∂y1

)
y2

)
(4)

x1 =

(
y1 +

(
∂G

∂y1

)
y2

)
+

(
∂H

∂x1

)T

y1 (5)

wH =

(
∂H

∂wH

)T

y1 (6)

where y1 and y2 represent the total derivatives of the activations y1 and y2 which are provided as input
in the backwards pass. The reader is referred to Algorithm 1 in [10] for a detailed listing of notation as
well as the remainder of the backward pass algorithm. For our particular augmentation to the reformer,
we follow [3] in setting F as an attention layer and G as a feedforward layer; we additionally set
H to be a feedforward layer operating along the concatenation of [x1, x2] and producing output of
dimension equal to dim(x1) = dim(x2). Our implementation of tied connections within reversible
layers is an augmentation of the existing reversible residual network framework outlined in [10].

3.4 Experimental Baselines

In order to understand the efficacy of learned k-means attention and reversible layer tied connections
on language modeling with the reformer, we constructed a simple language model around the
reformer framework. In particular, our BERT-inspired model consisted of a fixed position embedding
followed by a feed-forward layer and a series of reformer blocks (each of which contained attention,
feed-forward, and residual connections).

As we lacked sufficient time to train our language model for weeks and compare results with
BERT state-of-the-art performance, we defined our first baseline to be the performance of our
constructed language model using full shared key-query attention and reversible residual layers
without connection tying. We additionally defined a second baseline consisting of our language
model using LSH attention (as in [3]) and traditional reversible residual layers. We evaluated our
chosen baselines against our fully augmented framework along with ablations of k-means attention
and reversible residual layers with tied connections.

4 Experiments

In this section, we present results of our two aforementioned baselines (Section 3.4), full augmented
model, and its ablations on a masked language modeling task as well as several selected GLUE
benchmarks; we emphasize performance as well as training and inference times across all models.
All experiments were conducted on a single NVIDIA Tesla M60 GPU with 8GB of memory.

4.1 Masked Language Modeling

Dataset and Experimental Details. In order to evaluate the efficacy of our models at learning
representations of natural language, we utilized a masked language modeling task where 80% of
tokens were masked, 10% were randomly chosen, and 10% were unchanged (using a pre-trained
BERT tokenizer [14]). For this task, we selected a massive dataset of 3,036 English books written by

4



Figure 1: Pre-training loss for baseline (1) and (2) relative to our k-means attention variant. Evaluation
loss and perplexities are reported in Section 4.1.

142 authors from Project Gutenberg [15]. We utilized code from [5] to perform masking and padding,
and we split our dataset into 90% train, 10% test. All experiments were conducted with a maximum
sequence length of 512, reformer uniform hidden layer dimension of 512, depth of 6, and 8 attention
heads; the only variant was the ablated variable. Training was conducted for 5K iterations (batch size
32) with an adaptive learning rate schedule as in [16]. Evaluation was performed with respect to the
cross-entropy loss and perplexity [17] metrics.

Results. Figure 1 represents training loss versus iteration number for both baselines as well as the
k-means attention model after 5K iterations. Our results upon evaluation on a held-out test set are
represented in Table 1, where metrics were computed by masking arbitrary words from unseen books
and measuring the models’ ability to predict them.

Model Type Evaluation Loss Evaluation Perplexity

Baseline 1 (Full Attention) 5.58 968.87
Baseline 2 (LSH Attention) 4.86 1054.37
k-means Attention 4.90 726.48

Table 1: Evaluation results for baselines and our proposed models on masked language modeling.

Furthermore, Figure 2 represents average training times observed for both k-means and the LSH
attention baseline, with significant improvements using the k-means approach as hypothesized.
Our findings therefore point to the efficacy of k-means attention as a significant boost not only
performance-wise but also complexity-wise in the reformer architecture.

We additonally performed experiments with reversible layer tied connections, but those showed
diverging losses after 1.2K iterations; debugging has been slowed due to the exceptional circumstances
surrounding COVID-19. As a result, we have not reported our results for these findings, although the
code and associated scaffolding exists in the indicated repository for the reader to examine and test
on their own datasets.

4.2 GLUE Evaluation

Dataset and Experimental Details. In order to evaluate our models’ abilities to understand natural
language beyond predicting masked words, we additionally conducted evaluation along numerous

5



Figure 2: Seconds per iteration for the LSH attention baseline and k-means attention during pre-
training. Note the significant benefits of our proposed k-means attention in improving training
times.

GLUE verticals [4]. In particular, we focused on performing evaluation along the CoLA and SST-B
datasets; the former is an acceptability task, while the latter is focused on sentence similarity. We
utilized the canonical train/test splits for both datasets, so that the CoLA dataset contained 10,000
training examples and 1,100 test examples while the SST-B dataset contained 7,000 training examples
and 1,400 test examples.

Following the canonical pretraining/finetuning pipeline for BERT-like language models [2], we
approached these tasks by utilizing our pretrained models on the masked language modeling task
from Section 4.1. In particular, we added a classification head over all output embeddings from our
reformer language models and finetuned each model on the specified GLUE tasks. GLUE evaluation
was aided by scripts from the HuggingFace team Transformers library [14].

Results. Our results for both of these tasks were unfortunately hampered by the limited size of our
pretraining dataset, the fact that we only pretrained for 5K iterations, and the small size of our model.
Indeed, we obtained near-zero Matthew’s correlation coefficient on the CoLA dataset, and a near-zero
Pearson correlation coefficient on the STS-B dataset. We hope to pre-train for longer periods of time
with a deeper model in the future in order to effectively understand the impact of our improvements
on downstream linguistic tasks.

5 Analysis and Future Work

Performing evaluation the masked language modeling task (Section 4.1) and datasets from the GLUE
benchmark (Section 4.2) helped verify the value of our proposed augmentations to the reformer
framework along both performance and optimization verticals. In particular, our results from the
masked language modeling task indicated that the use of k-means attention alone reduced language
model training times by 30%. Furthermore, the use of learned k-means attention was able to increase
the representational power of the reformer language model to some degree, resulting in reduced
evaluation loss and perplexity scores as in Table 1. While we were unable to evaluate the performance
improvement of increasing model capacity via tied weights (due to loss divergence or perhaps an
error in our backwards pass implementation), we believe our implementation has great promise and
we hope to perform future testing in this regard.

6



After pretraining as above to ensure that our models learned meaningful representations of natural
language, we aimed to use finetuning as a mechanism to evaluate the importance of our adjustments
in downstream task evaluation. While our limited model size and pretraining dataset yielded minimal
results in this regard, we have developed all scaffolding and code needed to pretrain and finetune our
augmented reformer models on larger datasets for longer periods of time. We hope to utilize our code
and preliminary findings to delve deeper into this area post-COVID19.

6 Conclusion

In this work, we develop, implement, and analyze the two novel mechanisms to reduce the training
time and increase the representational power of the reformer architecture as part of a language
model. In particular, our conceptualization of k-means attention performs significantly better other
attention mechanisms while better identifying vectors that contribute meaningfully to attention
scores. Furthermore, our inclusion of a connection-tying layer has the potential to increase model
capacity while preserving the per-layer constant memory requirement, although its impact on model
performance has yet to be identified due to diverging losses obtained during experimental analysis.
Although our work was cut short by increasing tension surrounding COVID-19 as well as limited
training times, we hope that our initial results as well as the scaffolding and pipelines we’ve developed
for analyzing our adjustments will prove useful for future work.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[3] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

[4] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[5] Phil Wang. reformer-pytorch. https://github.com/lucidrains/reformer-pytorch,
2020.

[6] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[7] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

[8] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in
neural information processing systems, pages 5754–5764, 2019.

[9] Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers.
arXiv preprint arXiv:1909.00015, 2019.

[10] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual
network: Backpropagation without storing activations. In Advances in neural information
processing systems, pages 2214–2224, 2017.

[11] Gabriele Prato, Ella Charlaix, and Mehdi Rezagholizadeh. Fully quantized transformer for
improved translation. arXiv preprint arXiv:1910.10485, 2019.

7

https://github.com/lucidrains/reformer-pytorch


[12] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. In Advances in neural information processing
systems, pages 1225–1233, 2015.

[13] Sébastien Bubeck, Marina Meilă, and Ulrike von Luxburg. How the initialization affects the
stability of the -means algorithm. ESAIM: Probability and Statistics, 16:436–452, 2012.

[14] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-
the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[15] Shibamouli Lahiri. Complexity of Word Collocation Networks: A Preliminary Structural
Analysis. In Proceedings of the Student Research Workshop at the 14th Conference of the
European Chapter of the Association for Computational Linguistics, pages 96–105, Gothenburg,
Sweden, April 2014. Association for Computational Linguistics.

[16] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. arXiv preprint arXiv:1804.04235, 2018.

[17] Thomas Gottron and Christian Gottron. Perplexity of index models over evolving linked data.
In European Semantic Web Conference, pages 161–175. Springer, 2014.

8


	Introduction
	Related Work
	Approach
	Background
	Learned k-Means Attention
	Reversible Layer Tied Connections
	Experimental Baselines

	Experiments
	Masked Language Modeling
	GLUE Evaluation

	Analysis and Future Work
	Conclusion

