
BERT for Question Answering on SQuAD 2.0
Zhaozhuo Xu, Yuwen Zhang

Problem Approach Results and Analysis
• Machine reading comprehension and question

answering is an essential task in natural language
processing. It is always challenging since it requires a
comprehensive understanding of natural languages
and the ability to do further inference and reasoning.

• Recently, Pre-trained Contextual Embeddings
(PCE) models like ELMo and BERT have attracted
lots of attention due to their great performance in a
wide range of NLP tasks.

• In this project, we picked up BERT model and tried
to fine-tune it with additional task-specific layers to
improve its performance on Stanford Question
Answering Dataset (SQuAD 2.0)

Data

Conclusion
• We added several components on top of the BERT model as task-specific layers

and analyzed their performance compared to BERT baseline model in great details.
• Our best model so far implements BiLSTM Encoder + BiLSTM Decoder +

Highway + BERT-SQUAD-Out as the output architecture on BERT uncased base
model, and it achieves an F1 score of 77.96 on the Dev set.

• With ensemble technique, we finally achieved an F1 score of 79.44 on the Dev Set
and 77.827 on the Test Set, ranked 12th on the 224N leaderboard.

CS 224N

• We used Stanford Question Answering Dataset
(SQuAD 2.0) to train and evaluate our models.

• Samples in this dataset include (question, answer,
context paragraph) tuples.

• The paragraphs are from Wikipedia. The questions
and answers were crowdsourced using Amazon
Mechanical Turk.

• We have around 150k questions in total, and roughly
half of the questions are not answerable.

• If a question is answerable, the answer is guaranteed
to be a continuous span in the context paragraph.

ID Architecture on Top of BERT F1 EM
1 BERT-base PyTorch Implementation 76.70 73.85
2 BERT-base Tensorflow Implementation 76.07 72.80
3 GRU Encoder + Self-attention + GRU Decoder + BERT-SQUAD-Out 73.59 69.87
4 BiLSTM Encoder + BiDAF-Out 76.37 73.05
5 CNN Encoder +Self-attention +BERT-SQUAD-Out 76.49 73.23
6 CNN Encoder + BERT-SQUAD-Out 76.56 73.64
7 GRU Encoder + GRU Decoder + BERT-SQUAD-Out 76.85 73.77
8 CNN Encoder + BiLSTM Decoder + Highway + BERT-SQUAD-Out 77.07 73.87
9 BiLSTM Encoder + Highway + BERT-SQUAD-Out 77.41 74.32
10 BiLSTM Encoder + Highway + BiLSTM Decoder + BERT-SQUAD-Out 77.66 74.87
11 BiLSTM Encoder + BiLSTM Decoder + Highway + BERT-SQUAD-Out 77.96 74.98
12 Ensemble of 11 and 7 78.35 75.60
13 Ensemble of 11 and 7 and BERT large case model 79.44 76.966

Table 1: F1 and EM scores for different architectures (All our implementations are done in PyTorch).

ID HasAnsF1 NoAnsF1 hasAnsEM NoAnsEM
1 79.29 74.33 73.33 74.34
2 80.75 71.78 73.92 71.78
3 82.47 65.43 74.71 65.44
4 81.26 71.875 74.33 71.88
5 80.48 72.82 73.68 72.82
6 79.70 73.67 73.61 73.67
7 80.80 73.30 74.26 73.30
8 81.56 72.95 74.85 72.95
9 80.73 74.37 74.26 74.37

10 74.68 80.40 68.87 80.40
11 78.72 77.27 72.47 77.27

Table 2: Has-Answer and No-Answer F1 scores for different architectures.

• Recurrent units such as BiLSTM and GRUs may help improve performance on top of BERT.
All the models that outperforms BERT baselines contain at least one recurrent encoder or
decoder. It verifies our proposed idea that RNN encoder-decoder architecture can help to
integrate temporal dependencies between time-steps of the output tokenized sequence better,
thus refine the output sequence.

• Self-attention may not help improve SQUAD performance when it is added on top of BERT.
We can see that model 3 cannot behave as well as model 6 when self-attention is added
between the GRU encoder and GRU decoder. It makes sense because the architecture of
BERT model alone is built on lots of masked attention layers and pre-trained with specific
tasks. Adding attention on top of it as a task-specific layer may not improve its performance
further.

• CNN encoder can improve the performance on SQUAD when added on top of BERT with
other structures. However, the benefits of CNN encoder is limited. When we replace the
BiLSTM encoder with an CNN encoder in our best model, we have an F1 score 77.07
(compared to the best 77.96). Also, from model 5 we can see that, by adding a self-attention
layer on top of the CNN encoder, we can improve the performance of our model. As we
know that, CNN always models the local interactions and a following RNN or self-attention
can model the global interactions. Although the performance of CNN encoder is not as
good as an RNN one, it’s always faster for getting rid of the RNN’s iterative nature. So it
is promising to combine the CNN encoder with a simple data augmentation technique to
enrich the training data to improve the model’s performance further.

• BiDAF output layer cannot outperform the BERT output layer. We see that even adding an
additional encoder, the output layer of BiDAF still cannot beat the baseline. For BiDAF
model, we actually pass the query-to-context and context-to-query attention to the output
layer (modeling layer + an additional output layer). But in our BERT model, although the

7

ü Our main idea is to add an encoder-decoder architecture on top of the BERT model. This
idea comes from the computer vision area. For multi-view synthesis task, we can use a
general auto-encoder to generate the sketch of other views and an additional auto-encoder for
texture level reconstruction.

Reference

ü Modules on Top of BERT

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint 
arXiv:1810.04805, 2018.

[2] GitHub. https://github.com/huggingface/pytorch-pretrained-BERT, 2018.

ü Results Summary

ü Error Analysis Example


