Natural Language Processing with Deep Learning CS224N/Ling284

	Introduction & Related Work				
	Video captioning is the task of understanding the visual content of video sequence and translating that understanding to an appropria caption. Automatic video description generation can have many practical applications in daily scenarios such as video retrieval, blind navigation, and automatic video subtitling [1].				
	Early works in video captioning extracted feat from 2D-CNNs for each frame and averaged t before inputting into an LSTM. Venugopalan [2] et al. used a sequence-to- sequence model with per-frame 2D-CNN feat as the input sequence. Later works incorporated attention, with a particular emphasis on temporal attention to attend to different features over time.				
In c	our work, we explore spatio-temporal atten ver features extracted from a pre-trained P3 (Pseudo-3D ResNet). We also compare the performance of LSTMS to Transformers.				
 Data Dataset: MSVD (Microsoft Video Dataset) 1969 videos – average of 10 seconds Average of 40 captions each We used 5 captions per video for training 1200 training, 100 validation, 669 training sp Captions are usually 5-10 words long – lack of diversity with many similar captions across video 					
	References				

[1] Song, J., Gao, L., Liu, L., Zhu, X., & Sebe, N. (2018). Quantization-based hashing: a general framework for scalable image and video retrieval. Pattern Recognition, 75, 175-187. [2] [Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R.J., Darrell, T., & Saenko, K. (2015). Sequence to Sequence – Video to Text. 2015 IEEE International Conference on Computer Vision (ICCV), 4534-4542.

Comparing Attention-based Neural Architectures for Video C Jason Li, Helen Qiu jasonkli@stanford.edu, shiqiu21@stanford.edu CS224N-Winter2019, Stanford University

Captioning	THE REAL FREE THE THE THE THE THE THE THE THE THE T
Analysis	

M Encoder ecoder	P3D Encoder + LSTM decoder	Ensemble Encoder + LSTM decoder	Transformer + 2D-CNN Features	Transformer + P3D Features
5	36.5	38.74	44.6	37.27
4	23.18	34.59	33.68	22.48

Skew in dataset for "man" vs "woman" (541 vs. 152 in training and 291 vs. 87 in validation) • We compared performance on subset that included "man" or some close variation, but not "woman", and

Performance significantly better for "man" subset Particularly large discrepancy for P3D – possible that it does not discern "man" vs. "woman" since it was pretrained on activity recognition

Main Findings & Future Work

• Attention over P3D features did not perform as well as 2D-CNN features -- pre-training on action recognition may limit what features are captured, as shown by "man" vs "woman" analysis

• Ensemble model shows promise in providing different, but relevant, information for video captioning Transformers outperformed LSTMs

• Further experiment with combining P3D features with LSTM features, such as with Transformer

• Substitute ResNet-152 with Faster-RCNN for feature extra • Compare with other datasets – image features seem to be sufficient for the MSVD dataset, but what about others? • Incorporate additional features, such as optical flow, as

• Look into ways to address bias towards more frequent