
CodaLab username: maxschorer 1 INTRODUCTION

Unilateral Multi-Perspective Matching for Machine
Comprehension

Sigberto Alarcon Viesca
Department of Computer Science

Stanford University
salarcon@stanford.edu

Jason Wang
Department of Statistics

Stanford University
zwang01@stanford.edu

Max Schorer
Department of Computer Science

Staford University
mschorer@stanford.edu

Abstract

Machine Comprehension (MC) involves answering a question with a given context
paragraph. Recently, methods involving attention between the question and the
paragraph have proved successful in this task. In this paper, we explore methods
to address this challenge drawing inspiration from recent advances in the Stanford
Question Answering Dataset (SQuAD) [1].

Our most successful model uses first encodes the question and the paragraph via
a bidirectional LSTM. Next, we match the encoded sentences in two directions
P → Q and P ← Q, drawing inspiration from the Bilateral Multi-Perspective
Matching model [2]. This encodes the paragraph at each word against the encoded
question from ”multiple perspectives”. We explore methods to aggregate these
encodings to produce a knowledge representation. The knowledge representation
is then fed into two bidirectional Long short-term memory (BiLSTM) decoders,
one to predict the start index of the answer within the context and another for the
end index. We discover that Unilateral Multi-Perspective Matching is a powerful
tool and boosts our performances significantly, as demonstrated by our F1 and EM
scores on the SQuAD Test Set of 66.2% and 54.6%, respectively.

1 Introduction

Machine Comprehension (MC) has long been a compelling challenge in Natural Language Process-
ing, but until recently, it’s been hampered by two limitations: modeling and datasets. On the first
front, MC models were often comprised of multiple independent components that required a lot of
custom feature engineering, resulting in long and complicated iteration cycles. However, the devel-
opment of end-to-end neural network architectures has resolved these two issues, and these newer
architectures are surpassing the previous state-of-the-art performance. Second, previous datasets
had a trade-off in quality or size. High quality datasets had only a couple thousand observations,
while didn’t require much reasoning (ex: multiple chance, Cloze-style datasets where one word is
randomly removed) and current models have already saturated performance. However, the recently
developed Stanford Question Answer Dataset (SQuAD) addresses these issues by having a large
corpus (100K observations) with questions whose answers require complex, human-like reasoning.
This paper investigates the performance of a neural network architecture trained on this dataset.

1

CodaLab username: maxschorer 4 MODELS

2 Task Definition

A Machine Comprehension task involves a question, a paragraph containing the answer. The
objective of the machine is to predict that correct answer span within the paragraph. In other
words, we want to predict an answer span tuple A = {as, ae} given a question of length n,
Q = {q1, q2, ..., qn} and a supporting context paragraph P = {p1, p2, ..., pm} of length m. Ad-
ditionally, the answer must satisfy the constraint 1 ≤ as ≤ ae ≤ n. The SQuAD task can be
represented as learning probability Pr(A|P,Q) from the training set and predicting answers by
A = argmaxas,ae

Pr(as|P,Q)Pr(ae|P,Q) when generating answers given test data.

3 Dataset

The SQuAD dataset was built by first sampling 536 of the top 10,000 articles from English
Wikipedia at random [1]. After selecting paragraphs from this corpus, crowdworkers from Ama-
zon Mechanical Turk were hired to answer up to 5 questions on the content of those paragraphs
given that the answer was a subsequence of the paragraph. Different types of reasoning are needed
depending on the question (ex: lexical variation vs syntactic variation), while answers could come
in a variety of forms, from a single date or number to a noun phrase (ex: property damage) or
clause (”to avoid trivialization.”) A sample triplet taken from SQuAD is below, and the resulting
dataset is a set of over 100,000 triplets (paragraph, question, answer) split into a training set (80%),
development set (10%), and test set (10%). An example is shown below for reference:

Super Bowl 50 was an American football game to determine the champion of the Na-
tional Football League (NFL) for the 2015 season. The American Football Conference
(AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion
Carolina Panthers 242̆01310 to earn their third Super Bowl title. The game was played on
February 7, 2016, at Leviś Stadium in the San Francisco Bay Area at Santa Clara, California.
As this was the 50th Super Bowl, the league emphasized the ”golden anniversary” with var-
ious gold-themed initiatives, as well as temporarily suspending the tradition of naming each
Super Bowl game with Roman numerals (under which the game would have been known
as ”Super Bowl L”), so that the logo could prominently feature the Arabic numerals 50.

Question 1: Which NFL team represented the AFC at Super Bowl 50?
Answer 1: Denver Broncos
Question 2: Which NFL team represented the NFC at Super Bowl 50?
Answer 2: Carolina Panthers
Question 3: Where did Super Bowl 50 take place?
Answer 3: Santa Clara, California

Models trained on this dataset are evaluated on two metrics: F1 and Exact Match (EM). Humans
scored 86.8% and 77% respectively, while the current highest score is already close to human per-
formance (84%, 76.9%).

4 Models

In this section, we briefly explain several models we implemented and evaluated. We first de-
scribe our baseline model. Then we discuss our more successful model inspired by Bilateral Multi-
Perspective Matching (BMPM) [2][3] as well as tweaks in attempts to improve its performance
and to understand which architectures were most helpful. Each model consists of a combination of
the following layers. We will refer to our best-performing model as Unilateral Multi-Perspective
Matching as a reference to the methods of the BMPM

2

CodaLab username: maxschorer 4 MODELS

4.1 Layers

4.1.1 Word Representation Layer

In this layer, we represent each word in the question and the paragraph as a c-dimension vector
where c = 100. The word embeddings are pre-trained and fixed during training. They are taken
from GloVe (Pennington et al., 2014)[3]. The output is P = [p1, p2, ..., pm] and Q = [q1, q2, ..., qn]
where pi and qj are c-dimensional word embeddings.

4.1.2 Context Representation Layer

Next, we process each word in the question (n words) and each word in the paragraph (m words).
A bidirectional LSTM is used to process each word one at a time to generate a hidden states. The
forward and backward hidden states for each word are concatenated and the outputs form the context
representation H = [h1, h2, ..., ht] where hi ∈ R2d where d is the size of the LSTM hidden states.

4.1.3 Attention Flow Layers

The attention layers are responsible for linking and fusing information from the paragraph and the
question. They are arguably important our models. Instead of popular attention methods that com-
bine the question and the paragraph into a single vector, the attention layer outputs a knowledge
representation where at each word in the paragraph is encoded with information from the question
and vice versa. This is to ensure that we don’t lose any information through summarizing.

We implemented various attention layers. The first was a basic attention layer that we benchmarked
our results on. Next we created a Unilateral Multi-Perspective Context Matching Layer. In this
implementation, we compare each contextual embedding of the paragraph with the question through
multiple perspective. Finally, instead of encoding the paragraph through the context of the question,
we reverse the order. We explore ways to encode each state of the question conditioned on the
paragraph and use such information to add more information to the knowledge representation.

Baseline Simple Attention Layer

The is the key layer in the Baseline model. This layers computes each attention vector for each
time-step from the paragraph with all time-steps in the question. We also call this step P → Q
attention. The step determines which query words are most relevant to each paragraph word. We
calculate a similarity matrix for each word in the paragraph pi with each word in the question qj .
Then we take the softmax along each column and so the subsequent attended vector is a weighted
average of the question context representation.

A = softmax(PQT)

Qattention = AQ

Next we mix the context and attention vectors to produce the knowledge representation. First, we
concatenate the paragraph and context-to-query attention vector. Next we multiply it by a matrix
W ∈ R3d×3d and add a bias. The output a knowledge rep Pknowledge ∈ Rm×3d.

Pknowledge = [P ;Qattention;P ◦Qattention]W + b

In the second method, we concatenate the context and attention vectors. The output is also a Rm×3d

vector. In our experiments, the first method scored only slightly better than simple concatenation.
Nonetheless, having either attention layer vastly improves performance.

Pknowledge = [P ;Qattention;P ◦Qattention]

Unilateral Multi-Perspective Matching Layer

This is the key layer in the UMPM model. Here, we implement P → Q attention.

3

CodaLab username: maxschorer 4 MODELS

First, we compute the dimensional weighted matchings with

m = fm(v1, v2;W)

where v1 and v2 are d-dimensional vectors and W ∈ Rl×d is a trainable variable. l is the number of
perspectives. The output is a l−dimensional m = [m1,m2, ...,ml]. Each component is computed
by

mk = cosine(Wk ◦ v1,Wk ◦ v2)
and each mk represents the value of the kth perspective. Wk is the kth row of W .

Next, we implement three matching strategies to compare one time-step of the paragraph with all
time-steps of the question. Each is a perspective that tells us where important information exists in
the paragraph. For sake of conciseness, we will describe how we compute each perspective for the
forward states. The backward perspectives are also computed with similar methods.

1. Full-Matching: Each forward (or backward) contextual embedding hp
i is compared with

the last forward (or backward) embedding hq
N of the question. We repeat this on the back-

ward states.
mfull

i = fm(hp
i , h

q
N ,Wk)

2. Maxpooling-Matching: Each forward (or backward) contextual embedding in the para-
graph hp

i is compared with every forward (or backward) embedding hq
j for the question.

For each dimension, the maximum value is retained.

mmax
i = max

j∈{1,2,...,N}
fm(hp

i , h
q
j ,Wl)

3. Attentive-Matching: For each contextual embedding in the paragraph hp
i and each context

embedding in the question hq
j , we compute a cosine similarity to represent weights.

ai,j = cosine(hp
i , h

q
j)

Then we weigh the question states hq
j with the ai,j to generate a weighted sum of question

embeddings at time-step i of the paragraph.

hmean
i =

∑N
j=1 ai,jh

q
j∑N

j=1 ai,j

Finally, we match each mean vector with its corresponding attentive vector.

matt
i = fm(hp

i , h
mean
i ,Wm)

At each time-step, we apply all three matching strategies for forward and backward states and con-
catenate the vectors to create a 6l-dimension vector. We aggregate all vectors for the time-steps to
create a knowledge rep.

Pknowledge ∈ Rn×6l

Q→ P Attention Layer

Our third and final model combines UMPM layer and a Q → P attention to explore if adding
attention in the opposite direction improves performance. In this layer, we want to find which
paragraph word have the closest similarity to one of the question words and thus critical to answering
the question.

The following steps are inspired by BiDAF model [5]. First we compute the similarity matrix using
the knowledge representations for the paragraph Pknowledge and the question Qknowledge ∈ Rm×6l,
which is the output of the UMPM layer where we reverse the context representation for P and Q.

S = softmax(Pknowledge ·QT
knowledge)

Next we obtain weights for each knowledge embedding in the paragraph by

b = softmax(max
col

(S)) ∈ Rm

4

CodaLab username: maxschorer 4 MODELS

where the maximum along each column is retained. Let bt be the weight for the tth time-step in the
paragraph. The weighted sum of each time-step

p̃ =
∑
t

btP
t
knowledge

is created and then tiled M times to create the matrix P̃ ∈ Rm×6l.

Finally, we concatenate the vectors to get the final knowledge representation.

PbiAtten−knowledge = [Pknowledge;Pknowledge ◦ P̃] ∈ Rm×12l

4.1.4 Aggregation and Prediction Layers

All our models use the same aggregation and prediction techniques. We feed the knowledge rep-
resentation Pknowledge ∈ Rm×L to a BiLSTM (concatenating the forward and backward outputs)
to generate a layer of hidden states, Panswer s ∈ Rm×2d where d is the default size of the LSTM
hidden state. A feedforward neural net is applied to each state of Panswer s and a sigmoid is applied
to the output to generate a probability distribution for Pr(as|p, q).
Panswer s is fed into a another BILSTM where Panswer e is generated by aggregating the hidden
states. A similar feedforward neural net followed by a sigmoid is applied to generate Pr(ae|p, q).
We apply a second BiLSTM layer because such architecture ensures that ae depends on as i.e.
ae ≥ as.

4.2 Models

We concisely define our models as combinations of the layers described above. We provide an
illustration of the UMPM in Figure 1.

4.2.1 Baseline

1. Word Representation Layer

2. Context Representation Layer

3. Baseline Simple Attention Layer

4. Aggregation and Prediction Layers

4.2.2 Unilateral Multi-Perspective Matching

1. Word Representation Layer

2. Context Representation Layer

3. Unilateral Multi-Perspective Matching Layer

4. Aggregation and Prediction Layers

4.2.3 Multi-Perspective + Q→ P Attention

1. Word Representation Layer

2. Context Representation Layer

3. Unilateral Multi-Perspective Matching Layer

4. Q→ P Attention Layer

5. Aggregation and Prediction Layers

5

CodaLab username: maxschorer 5 EXPERIMENTS

Figure 1: A graphic representation of our Unilateral Multi-Perspective Matching Model

Model Train F1 / EM Val F1 / EM Dev F1 / EM Test F1 / EM

Baseline 29.6 / 20.3 27.6 / 17.1 NA NA
UMPM + Q→ P Attention 65.6 / 48.2 56.1 / 42.0 NA NA
UMPM 72.1 / 54.3 63.5 / 45.1 64.6 / 52.5 66.2/ 54.6

Table 1: Model performance as measured by F1 score and exact match (EM) on a percent scale.
The Unilateral Multi-Perspective Matching (UMPM) model far outperformed the others in both the
Training and Validation sets.

5 Experiments

5.1 Setup

We use 100-dimensional GloVe word embeddings as input, and truncate paragraphs and questions
to maximum lengths of 300 and 25, respectively, for the sake of memory efficiency and speed.
We applied masking to any states less than 300 or 25 that did not correspond to a word in the
context/question. All our LSTM’s have a hidden dimension size of 150 and we employ a dropout
probability of 0.15 between each LSTM state to aid in generalization. We used an initial learning
rate of 0.001 and annealed to half the previous value every time F1 score on the validation set
remained relatively unchanged between two epochs. We trained each of our models for a minimum
of 8 epochs, around half of which were at the initial learning rate. We use a number of perspectives
(as defined for the BMPM model) of 30.

We initially constructed our vocabulary exclusively on the validation and training sets of SQuAD
(cased). However, our first test on the development set showed a significant score in F1, from
63% in Val to 37%. Analysis on the output revealed a significant amount of <UNK> tokens,
representing words outside the vocabulary we trained on. Therefore, we added lowercased and
capitalized versions of all 6B GloVe vectors (uncased). With this vocabulary update alone, the same
model achieved an F1 score of 64.6% on the Dev Set, demonstrating the value of a large vocabulary
for generalization.

5.2 Results

The performance of our models as measured by F1 and exact match (EM) scores as defined by
the authors of SQuAD is shown in Table 1. Unsurprisingly, the basic baseline model performed
relatively poorly. The more sophisticated matching layer of UMPM achieved significantly better
results. We attribute this to a more nuanced activation techniques, and the fact that the perspective
matrix W allows for an added dimension through which two hidden states can interact. However, the
UMPM + Q→ P attention model performed worse than the UMPM. We hypothesize that attention

6

CodaLab username: maxschorer 6 CONCLUSION

Figure 2: We compare the F1 score of our UMPM model against the length of the paragraph (left),
question (center) and answer (right) in the validation set. While there is a negligible difference in
performance when varying the context or question, performance is hindered as the answer length
increases

was calculated on knowledge representations instead of the contextual representations. Applying
attention twice may have weakened the effects of the first attention layer. A simple fix would be to
look into would be to apply Q→ P attention on the contextual representations instead.

Figure 2 shows how F1 score is affected by the lengths of the paragraph, question and answer. The
biggest advantage of LSTM’s and other more advanced recurrent networks is that they can preserve a
”memory” for multiple states, but they have their limits. We observe that the lengths of the paragraph
and question had a negligible effect on F1. We interpret this as a successful representation of both,
in th sense that the most important aspects for the task were maintained across states. However, we
observer a very sizable drop in F1 as the answer span increases. We believe this could be because of
three reasons. One, the BiLSTM step in the Aggregation layer loses too much information about the
answer itself, leaving the decoding step (feedforward) with little information to make a prediction
on. Two, the decoder architecture where the end index depends on the start index through a LSTM
raises limitations for long answers where information is lost as LSTM pass through more stages.
Three, P → Q attention is more effective where there are fewer words in the paragraph to attend to.
Longer answers force us to pay attention to more words.

An observation of individual data points revealed that the easiest questions to answer are those with
short answers that correspond to as specific fact/person/place, like ”where” ”when” and ”who”.
These kinds of answers have a very specific format that makes them easier to learn. The fact that
they are short also means that less information is lost between the answer start and answer end
states. The questions where our models performed worse include more nuanced explanations whose
syntactic and semantic format is more varied and longer. These are mostly ”Why” and ”How”. More
often that the previous kinds of questions, these are open to interpretation.

6 Conclusion

In his paper, we present a series of models for the Machine Comprehension task; the most success-
ful is Unilateral Multi-Perspective Matching, which combines elements from the Bilateral Multi-
Perspective Matching model used for the Natural Language Sentence Matching (NSLM) task. Our
best model achieved F1 and EM scores of 66.2% and 54.6% in the Test set, respectively.

The fact that question and paragraph lengths have negligible effect on performance makes us con-
fident that we achieved a robust representation of them. However, we note that long answers suffer
from a significant drop in both F1 and EM. In future work, we would experiment with more sophis-
ticated aggregation and prediction layers to improve this. Instead of a single feed-forward network,
we would attempt using deeper layers and also incorporate as input output of the UMPM layer
Residual Networks demonstrated this is a powerful architecture in Computer Vision tasks [6].This
may allow us to prevent lower performance in long answers as less information would be lost by the
prediction step.

7

CodaLab username: maxschorer 6 CONCLUSION

References

[1] Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for machine compre-
hension of text. arXiv preprint arXiv:1606.05250.

[2] Wang, Z., Hamza, W., & Florian, R. (2017). Bilateral Multi-Perspective Matching for Natural Language
Sentences. arXiv preprint arXiv:1702.03814.

[3] Wang, Z., Hamza, W., Mi, H., Florian, R. (2016). Multi-Perspective Context Matching for Machine Com-
prehension. arXiv preprint arXiv:1612.04211

[4] Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global Vectors for Word Represen-
tation. In EMNLP (Vol. 14, pp. 1532-1543).

[5] Seo, M., Kembhavi, A., Farhadi, A., & Hajishirzi, H. (2016). Bidirectional Attention Flow for Machine
Comprehension. arXiv preprint arXiv:1611.01603.

[6] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).

8

	Introduction
	Task Definition
	Dataset
	Models
	Layers
	Word Representation Layer
	Context Representation Layer
	Attention Flow Layers
	Aggregation and Prediction Layers

	Models
	Baseline
	Unilateral Multi-Perspective Matching
	Multi-Perspective + QP Attention

	Experiments
	Setup
	Results

	Conclusion

