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Abstract

Humans learn language by grounding word meaning in the physical world. Re-
cent efforts in natural language processing have attempted to model such multi-
modal learning by incorporating visual information into word and sentence rep-
resentations. Here, we explore the task of grounding lexical color descriptions
in their visual referents. We propose an RNN-based autoencoder model to learn
vector representations of sentences that reflect their associated color values. Our
model effectively learns a joint visual-lexical space that demonstrates composi-
tionality and generalizes to unseen color names. As a demonstration of such a
space learned, we show that our model can predict captions from color represen-
tations and color representations from captions. In addition to successfully model-
ing color language, this work provides a novel framework for grounded language
learning.

1 Introduction

Natural language is grounded in perception. Whereas humans learn language incrementally, asso-
ciating words with their experiential referents, current state-of-the-art natural language processing
(NLP) techniques rely on learning from massive text corpora. Grounded language learning is a
technique that uses a multimodal set of inputs for language acquisition rather than simply a set of
words or symbols. The study of grounded language learning has the potential to give insight into
how humans learn language as well as make NLP systems more human-like.

We are interested in the grounded semantics of color. Grounding color descriptions in their physical
representations serves as a proof of concept of grounding language in the visual world. We propose
a model for learning joint visual-lexical representations of colors via autoencoders.

2 Related Work and Background

Color naming and color generation serve as ideal benchmark tasks for models of grounded language
learning. There is a growing body of work that uses color descriptions as a case study in grounded
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language modeling. The LUX model introduced by McMahan and Stone (2015) uses Bayesian gen-
erative modeling for color naming. Monroe et al. (2016) improved on this model by using a Fourier
basis representation of color in conjunction with a long short-term memory (LSTM) recurrent neu-
ral network. A character-level model for color naming and color generation has also recently been
reported by Kawakami et al. (2016).

We aim to create “grounded” vector representations of color descriptions using autoencoders. An
autoencoder is a neural network that attempts to copy its input to its output, usually with some
constraint on the internal representation of its input (e.g. undercompleteness, sparsity) (Goodfellow
et al. 2016). RNN-based autoencoders have recently been explored as a way of learning fixed-length
vector representations of sentences (Oshri and Khandwala, 2016).

3 Approach

As outlined in Figure 1, our model takes as inputs lexical captions and attempts to reconstruct them.
Each caption has an associated color represented by a three dimensional normalized HSV vector.
The HSV color model represents a given color by providing three components: hue, which is a
circular measure for the primary color component, saturation, capturing the amount of whiteness,
and value, which holds the amount of lightness or brightness. While LUX (McMahan and Stone,
2015) and Monroe et al. (2016) utilized HSV color representations, we opted to use normalized
RGB values to avoid the complications introduced by having a circular variable. RGB is an additive
color space where a given color is defined by its relative intensities of red, green, and blue.

Figure 1: RNN autoencoder for color description reconstruction

The architecture contains two connected sub-modules: an encoder that maps captions into a low-
dimensional latent space, and a decoder which reconstructs the encoded representation back to a
caption. In our encoder, we utilized an RNN iterating over word embeddings to produce a caption
representation. We standardized the length of the RNN inputs by introducing a special ’pad’ token
at the beginning of captions where necessary (to ensure that the non-’pad’ tokens are closest the final
output). We use GloVe word embeddings (Pennington et al. 2014) pre-trained on Wikipedia 2014
and GigaWord 5 corpora. We allowed the embeddings to be updated by backpropogation (declared
them as variables) to incorporate the differences in semantics in the context of color description.

The output of the encoder RNN was then transformed from the caption space to our latent space as
follows:

enc(x) = σ(RNN(caption)Wcl + bl)

Note that the sigmoid non-linearity ensures that each value is between zero and one (the range of
the normalized RGB values).

In the decoder submodule, we first project our latent representation into the caption space via an
affine transformation and then feed that through an RNN to produce a softmax distribution across
our vocabulary from which the token with highest probability is included into our predicted caption.
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To each cell of the RNN we also input the latent representation such that the latent representation
could play a more direct role in token selection throughout the caption. A loss contribution for this
sub-module compared predicted tokens to processed true captions that included an ’end’ token after
the last word and ’pad’ tokens following it to standardize length but the penalty for not predicting
the pad token was excluded (via masking). The reconstruction error was applied to all tokens up to
and including the ’end’ token, allowing our model to predict variable-length captions.

3.1 Optimization

Our loss is composed of penalties incurred from the encoder and decoder portions:

L(θ) = Lreconstruction(θ) + µLvisual(θ)

The first term, the decoder penalty, is the cross-entropy loss for the reconstruction of the captions:

Lreconstruction(θ) =

T∑
t=1

CE(x(t), x̂(t))

The second term, the encoder loss, penalizes the latent representations of the captions, enc(x), that
are far from their corresponding visual representations (v(x)):

Lvisual(θ) = D(enc(x), v(x))

The motivation behind the inclusion of this distance penalty was two-fold. First, in recent work in
grounded learning (Lazaridou et al. 2016), multimodal word embeddings were learned by impos-
ing a similar “visual similarity” penalty on word vectors. Second, as in variational autoencoders
(Kingma and Wellington, 2013), we aimed to shape the distribution of the latent vectors to reflect a
known distribution such that we could use the decoder as a generative model.

The choice of D is a hyperparameter of our model. Our experiments include using `2 distance, an
“RGB distance”, and a max margin loss. The gain parameter µ controls the tradeoff between the
two losses, as is shown in Figure 2.

Figure 2: Tradeoff between reconstruction and visual losses for different values of µ

4 Experiments

4.1 Dataset

We follow McMahan and Stone (2015) and Monroe et al. (2016) in using a dataset generated from
an online survey where human users were presented colors and their descriptions were recorded
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(Monroe, 2010). We used a subset of these color-description pairs provided by McMahan and Stone,
(2015). This subset included those pairs generated only from non-colorblind, English speakers and
that were reported at least one hundred times. Additional processing was performed by McMahan
and Stone (2015) to normalize spelling and remove high-frequency spam labels. As such, the dataset
includes 2,176,417 unique color -description pairs pre-separated into training, development, and test
sets of sizes 1,523,108, 108,545, and 544,764 respectively. The dataset includes only 829 unique
captions but each caption can be paired with multiple HSV/RGB color values and vice-versa.

4.2 Model Considerations

4.2.1 HSV vs RGB

In our final model, we opted to size our latent space to the same as RGB space (R3). We did not see
any improvements in performance with increasing the size of the latent space (and in turn randomly
projecting RGB values into that space with a pseudo-invertible transformation by a semi-orthogonal
tensor). Restricting the dimensionality of the latent space also served the purpose of helping prevent
overfitting. We opted to use RGB representations instead of HSV to avoid complications introduced
by the circular nature of the “hue” measure in HSV while capturing differences in colors.

4.2.2 Choice of Distance Function

We considered several distance functions D for the visual loss Lvisual(θ):

D`2(enc(x), v(x)) = ‖enc(x)− v(x)‖2

DRGB(enc(x), v(x)) = ‖enc(x)2 − v(x)2‖2

Dmaxmargin =
∑

c′∼Pn(c)

max{0, γ − cos(enc(xc), v(xc)) + cos(enc(xc), v(xc′))}

Our max margin distance was adapted from Lazaridou et al. (2016). Following the max margin
formulation, our model optimizes cosine similarities between caption latent and true RGB repre-
sentations against negative samples. We formulated the DRGB loss as a means to account for the
gamma compression in storing luminescence information. In our evaluations, we opted for the
DRGB metric because it resulted in latent encodings that were most visually similar to the colors
they represent.

4.2.3 Minor Improvements

Additionally, although our task involved short captions (no more than three words), GRU cells out-
performed basic RNN cells in terms of total as well as visual and reconstruction losses. Although
pre-trained semantic distributional representations may not contribute to color meaning in a standard
or easily learnable way, we also noticed slight improvements in loss, sample reconstruction and cap-
tion generation using pre-trained GloVe as compared to randomly initialized embeddings. Perhaps
the improvements in using pre-trained embeddings would be more pronounced in a setting with a
larger data set and more unique words.

4.3 Results

4.3.1 Color Description Reconstruction

We first report the ability of our model to reconstruct color descriptions. Examples of colors, their
latent representations (and corresponding RGB values), and reconstructions can be seen in Figure 3.
In panel (a), we show examples of exact reconstructions.

In panel (b) are cases where the latent representations faithfully represent their corresponding color
descriptions, but the decoder’s reconstructions do not exactly match the encoder inputs. There is a
trend of over generalization in these errors. For example, the model opts to output the more often
seen “orange” than the rarer “orangish”. The panel also illustrates the error of slightly misplaced
modifiers.

4



(a) Exact reconstructions (b) Inexact, valid reconstruction (c) Incorrect reconstruction

Figure 3: Caption latent representations and reconstruction

Panel (c) then illustrates some gross errors of incorrectly applying modifiers (“greenish”), repeat-
ing color names in place of modifiers (“cyan cyan”), and even predicting lone-standing modifiers
(“dark”).

4.3.2 Compositionality

Figure 4: Learned compositionality of color descriptors (unseen colors names in bold)

Monroe et al. (2016) achieved generalization to compositional descriptions not found in the training
set, but was only able to show this via the conditional likelihood of color descriptions. When pre-
sented with unseen captions, our generative model provides color representations that reflect com-
positional understanding. As illustrated in Figure 4, our model is able to generalize how modifiers
in the caption space, for example “light”, “dark”, and “very”, extend to the joint visual space.

In addition to learning the basic scalar modifiers presented in Figure 4, our model learns more
complex transformations of color space, such as “neon”, “ugly”, and “vibrant”. We show these
modifiers applied to the basic color spectrum in Figure 5.
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Figure 5: Various modifiers applied to spectrum of base colors

4.3.3 Sampling the Latent Space

The decoder of our model learns to map latent representations of color descriptions back to color
descriptions. Because the encoder has been penalized to produce encodings that reflect the RGB
values associated with their color name, we can decode not just these latent representations but also
any RGB values. We show examples of sampling the latent space in Figure 6.

Figure 6: Color naming. Left: the sampled RGB value. Middle: an example of human label for that
RGB value. Right: Output color name from our model’s decoder.

Even though our model has not been directly optimized for the task of color naming as in McMahan
and Stone (2015) and Monroe et al. (2016), it still produces accurate descriptions of color. In fact,
there are many cases where the model produces more precise descriptions of colors than humans
(as in Figure 6, “blue” v.s. “light blue”). However, our “test accuracy” (the percentage of RGB
values for which our decoder’s output exactly matched human given labels) is only 7.7%. This is
unsurprising, as our model was not optimized to reproduce human given labels for specific RGB
values, and there is considerable variability in human labels for a given RGB value (McMahan and
Stone, 2015).
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5 Conclusion

We present a model that learned a joint color-caption space and is capable of generating both color
descriptions from captions and captions from color descriptions. We learn compositionality in a
generative fashion rather than by the probabilistic method in Monroe et al. (2016).

For future work, we would look to improve the evaluation metrics used for the task. A perfect match
accuracy over penalizes model generated captions that are humanly viable (e.g. those in Figure 3
(b)). We could achieve this by incorporating cosine similarity of output tokens compared to ground
truths or by expanding the sets of correct solutions considered per color value and/or caption. We
would also hope to generalize such a model to unseen captions and words by incorporating, for
example, a more effective mapping from general to color-context semantics.

Ultimately we would extend our framework to learning more complex multi-modal spaces. As an
example, we suggest applying this model to perform tasks such as captioning on real world images
represented by latent convolutional codes.
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