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Abstract

The Stanford Question Answering Dataset (SQuAD) consists on more than
100000 triplets paragraph, question, answer from Wikipedia, with various answer
types and length. By training a coattention-based encoder followed by a mostly
linear spanning decoder and a inversion handling post processing, we are able to
achieve a F1 of 56% and an exact match of 43% with a particularly good accuracy
on Named entities and numerical answers.

1 Introduction

1.1 Problem Description

When learning a new language, the first skill to master is understanding a text. This can easily be
tested by answering simple questions about it. In a similar way, a good Natural Language Processing
model must at least be able to capture the information contained in a text, before focusing to harder or
more specific tasks. We thus want them to be able to answer some reading comprehension questions.
The goal of this project is to develop a tool that can master reading comprehension using neural
networks. To do so, we want our model to understand the text and how each of its word is related
to the question asked. This part is called the encoder, and would correspond to a machine language.
Once that information is captured, we now want our model to be able to locate the answer to the
given question in the paragraph. We call this part the decoder.

1.2 Metrics and Related Work

We use two metrics to test the performance of the predicted answers. Exact match (EM) give the
proportion of prediction that exactly matches one of the ground truth answers. The second metric is
the F1 score (geometrical mean between precision and recall) between the predicted words from the
answer and the ground truth. In case of multiple answers, we just take the maximum of the scores.

Model Baseline r-net (single) r-net (ensemble) Oracle

F1 Score 51.0 80.8 84.0 91.2

Exact Match 40.0 72.4 76.9 82.3
Table 1: Performance of the baseline, the state of the art methods and the oracle



The original baseline model for this task is a simple logistic regression trained on feature extracted
of every possible candidate for the answer. The feature set includes unigram/bigram frequencies,
number of words to left/right, Part of Speech and Dependency features and features matching fre-
quencies of words in the question and in the answer. The oracle has been made by comparing human
performances on this task. Finally, the state of the art method is r-net developed by Microsoft Re-
search Asia. The performance for both metrics are summarized in table 1.

2 Data description

We will use the data from Stanford Question Answering Dataset (SQuAD [3]), which consists in
around 100,000 questions-paragraphs-answers triplets. The texts were extracted from Wikipedia
and the answers were selected by humans. The answers are defined as a spanning subset of the
initial paragraphs. The distribution of questions and paragraph lengths can be found in figure 1.

The answers to SQUAD questions are quite varied with numerical answers (date and oth-

Figure 1: Distribution of paragraph and question length in the training set

ers), named entities (person, location ...), clauses and noun/verb/adjective phrases. The distribution
of these different answer types is detailed in figure 2.

Figure 2: Proportion of different answer types in the dataset
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3 Models

3.1 Pre-processing

Before actually training/testing our model, we need to perform a few preprocessing step:

• We tokenize the paragraph and the question by simply splitting on spaces and separating
punctuation from text

• Because we do the optimization by batches, we need to extend paragraphs and questions
to have the same length. At training time, we chose a paragraph size of 300 and a question
size of 30 and at test time the longest paragraph size and question size in the dev/test set.
We then fill the vectors with 0 and create a boolean mask stating if the values are added or
not.

• At training time, we discard paragraph longer than 300 words and questions longer than 30
words. This simplifies the architecture used for the training and can still be used for longer
size when testing because the variables never depend on the number of words (recurrent
approach). We chose those limits to keep more than 95% of the examples at training time.

• We finally convert words to its corresponding indices in the embedding table (see section 6)
for an easier lookup and a decrease in variable storage.

3.2 Encoder

The first step for all encoders is to convert in embeddings the word indices of the paragraphs and
questions in the batch. We used GloVe embeddings trained on Wikipedia 2014 and Gigaword5. As
explained in section 6 we chose to not train the embeddings (constant). In the rest of the section,
we will describe the two most performing models we used, the attention encoder and the coattention
encoder.

3.2.1 Attention Encoder

The attention encoder consists in three step: encoding the question ant the paragraph, comput-
ing the attention to the question for each word of the paragraph and mixing the attention and the
paragraph representation to get the final encoded state. The whole process is summarized in figure 3.

Encoding the embeddings: We used bidirectional Recurrent Neural Network (RNN) with LSTM
cells to encode separately the question and the paragraph. Using a bidirectional RNN helps cap-
turing the relationship between words in the two directions and has proven to improve results on
unidirectional ones. The LSTM cell slightly improves the overall performance.

Computing the attention: To compute the attention, we first do a weighted dot product between
each element of the question with the elements of the paragraph and we then multiply it with the
paragraph. This step can be summarized as:

A = softmax
(
PWQT

)
Q

Although learning the weights gives more power to the model, it implies larger overfitting and yields
worse performance. The best performing attention encoder used W = I .

Mixing attention and paragraph representation: To obtain the final encoding, we finally con-
catenate our attention to the paragraph representation and apply a linear layer to each element of the
batch.

3.2.2 Coattention Encoder

The coattention encoder [5, 2] tries to extend the previous model by computing the attention of the
each word of the question to the paragraph and then get the attention of each represented word of
this attentive question to the paragraph. The three same phases appear:

3



Figure 3: Attention based encoder

Encoding the embeddings: There are two major modifications from the attention encoder. First
we use unidirectional RNN to learn the representations. This decreases the parameter space and the
two directions will be handled by the two successive attention followed by the mixing step. The
other difference is that we use a connected layer before the LSTM. This helps preventing words that
do not carry that much meaning but that are still in both texts to have less importance (”the”, ”a” ...).

Computing the coattention: Computing the coattention is pretty similar to the previous process
applied twice. We do not use attention weights this time as the model is already more complex and
it has proven useless in the simpler setting.

Mixing coattention and paragraph representation: To mix coattention with the paragraph, we
will use a bidirectional LSTM. This captures interactions between ”attentive” representations of the
words in the paragraphs.

Figure 4: Coattention based encoder

3.3 Decoder

3.3.1 Simple Linear Decoder

The decoder is the one proposed for the baseline. We first apply a linear layer to the encoded vector
to get the start. We then feed this prediction to a LSTM to get the prediction for the end, as shown
in the figure 5. This will use the probabilities of each word being the start to learn the end position.
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Figure 5: Simple linear decoder

Linear Mixed decoder A drawback of the simple linear decoder is that it only uses the starting
probabilities. To improve the decoding, we modified the previous decoder by adding adding a LSTM
at the beginning, and a feedback loop and give the predicted starting probabilities and the encoded
vector as an input to the LSTM that predicts the end. We decided to add as well the information of
the first LSTM by mixing it linearly with the output of the second LSTM. This second steps uses
different information as it can memorize information used to indirectly compute the start but not
outputted. The architecture for the decoder is summarized in figure 6:

Figure 6: Linear mixed decoder

3.4 Post-Processing

Our biggest fear for this project was that the decoder predicts a start after the end. We thus printed
at each epoch what we called the number of inversions, i.e. the number of times the end is predicted
before the start. Even for our best performing models, we converge to a 6-7% inversion rate. These
predictions are genuinely wrong so we decided to post process them. In those cases, we choose set
the most probable between the start and the end as the predicted position and look for the other as
the argmax probability in the admissible range. In the extreme cases, we could only pick one word
for the answer.

4 Training process

4.1 Regularization techniques

In order not to overfit, several techniques were used. For big neural networks, dropout was proved
to be a very good way to reduce overfitting. Indeed, it enables a better diversification of the neurons
by randomly switching some of them off during each epoch of the training.

We also tried L2 regularization on the linear layers of our model. However, it did not im-
prove our model : It yielded worse performance. We observed that early stopping and dropout were
enough for us to reduce overfitting, with difference between training and validation F1 of less than
5-7% before convergence.

The last regularization technique tried was batch normalization[1] of the connected layer
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output. Although it speeded up the decrease in loss, it did not increase our metrics, so we decided
to discard it in our final model.

4.2 Loss and Descent algorithm

To train our model, we minimized the sum of the cross entropy between the predicted start/end
indices and the ground truth.

Optimizer : Vanilla gradient descent was not very appropriated to our highly non convex problem,
so we opted for ADAM optimizer. By using momentum to escape local minima and considering
the norm of the gradient in the learning rate in order to do small steps when we meet some steep
gradients, it generally performs better on complicated neural network architectures.

Learning rate: Using learning rate around 0.01 lead to poor results. We understood that by
seeing some oscillations of the loss and high normed gradients. By reducing the learning rate after
a few epochs, we gained a lot of precision in our algorithm.

In order to cope with this trade-off, we decided to us a learning rate with exponential decay.
Indeed, we want the learning rate to be high enough to converge quickly to minimum but we want
it to be small to find the actual minimum. The learning rate changes with time and is defined as:

αt = max(α∞, α0e
−rt) = max(10−6, 10−3 × (0.84)t/7000)

Batch size: For precision and computational efficiency, we want to use batches of samples.

Regarding performance, the batch size matters a lot. Indeed, the bigger it is, the less updates
we make. We want to do frequent updates to converge faster but we do not want to do ”bad”
updates. Considering samples by batch enables us to average their gradients and thus remove the
noise created by ”bad” samples.

The performance issue comes from the fact that we are using GPUs. For instance, when you
are programming matrix operations in CUDA, you need to be careful about batch size. Indeed, the
size of your submatrix has to be consistent with the architecture of the hardware. You then usually
choose batch size that are dividers of the numbers of cells of the GPUs, which are both powers of
2. We assumed, that this fact was still true for more complex operations (as RNN in our case) and
used batch size of 64 samples, as the GPU provided by Azure is a TESLA M60 GPU. It has 4096
NVIDIA CUDA cores (2048 per GPU). We hope this fact will bring computational efficiency.

Gradient clipping: In order to avoid exploding gradients we performed clipping to a global norm
of 8. It enables us to reduce the ”jumps” when exploring our space to find the minimum. We noticed
that near the optimum, the gradient was often getting large and clipping gradient helped a lot there.

5 Results

5.1 Training loss

For the co-attention model with our linear mixed decoder, we get the training curves in figure 7. We
can see in it that we stop our training process when the loss starts to oscillate which occurs after 8-9
epochs in this case. It coincides when the EM and F1 scores start to flatten and the gradient norms
start to increase. This is how we performed early stopping in order not to overfit the train set.

Number of inversions: Even with the most performing models, we get between 6 and 7 % of
inversion. The simple post-processing is thus useful there as it enables us to gain around 1% of F1,
which is quite significant.

5.2 Dev Set

Table 2 shows some of our best performing models and their scores. Our best model on
the dev set was the one using co-attention based encoding and our homemade linear mixed de-
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Figure 7: Loss and gradients

Encoder \ Decoder Linear Sequence Linear Mixed

Attention LSTM 36.03 (24.47) /

Coattention LSTM 55.88 (43.30) 57.96 (39.76)

Coattention GRU 54.32 (34.81) 53.78 (35.01)
Table 2: Performance of different models on the dev set

coder. We got a F1 of 58% and a EM of 40%. The EM is slightly better for the simple linear decoder.

This table shows as well that models that use LSTM cells, were generally better than the
ones with GRU cells. Note that we tried several values for the size of the hidden state of both the
encoder and the decoder, as well as different embedding sizes. The trade-off is clear: we need
enough parameters to have a predictive power, but not too many to limit overfitting and to keep the
computation time quite low.

5.3 Test Set

Although performing a little worse on the validation set, our best performing model on the test set
was the coattention with simple linear decoder. We got a F1 of 56.086 and a EM of 43.858. The
parameters used are listed in 3. Because of the simplicity of the decoder, a higher state size was
necessary.

We currently are 52nd in the leaderboard.

RNN cell Embedding size Encoder size Decoder size Dropout Batch Normalization

LSTM 100 50 300 0.85 No
Table 3: Parameters for the best performing model

5.4 Diagnostic Experiments

Our best model works great with named entities and numerical answers. For instance, let us take the
question ”What performer lead the Super Bowl XLVIII halftime show?”. The answer is Coldplay.
It is easier to find as it is a ”simple” answer : only one name which is heavily related to music, and
thus highly correlated to term like ”performer” or ”show” which are not related to the football field.

However, it had poor results when the questions are long, syntactically complicated and/or
featuring unclear words (or with more than one meaning) like things or stuff ...). For instance, for
the question : ”What was the name of the event at the The Embarcadero that was held prior to Super
Bowl 50 to help show off some of the things that San Francisco has to offer?” The true answer is:
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"Super Bowl City"

whereas we predicted

"Super Bowl City" opened on January 30 at Justin Herman Plaza
on The Embarcadero, featuring games and activities that will
highlight the Bay Area ’s technology, culinary creations,
and cultural diversity. More than 1 million people are expected
to attend the festivities in San Francisco during Super Bowl Week"

We can clearly see that it gets confused by the ”things” in the question and the multiple subordinate
clauses as well as the two appearances of Super Bowl at the two extremes of the answer. Trying to
use a model that estimates the probability of each word to be in the answer could help for those kinds
of question. Using a mixture of these two types of models could definitely improve the performance
when the current model outputs long answers.

6 Next Steps

There are other directions we did not have the time to explore that could have improved our results.

Embedding: variable or constant? GloVe embedding were used as constants in our model. One
could consider setting the embedding as variables and specify their training to that task. However, we
did not think it was such a good idea as it would have increased a lot the number of parameters and
then tend to overfit the training set, and maybe ”destroy” the word vector representation in the early
steps. Moreover, when selecting an architecture it can be better to compare different modelisation
given constant GloVe embeddings.

PTE: Learning an embedding for the task: Another way of getting embedding more adapted to
this task would have been to follow the approach of Predictive Text Embedding [4]. By designing
several graphs to represent the data (connecting words to their question id, to their paragraph id, to
word appearing in the same window, connecting questions to answers ...) we could directly get bet-
ter information on the relationships between questions, paragraphs and answers in the embeddings
themselves and then apply any of the architectures stated above.

GPU vs CPU allocation We did not really try to think about memory allocation here. We just
decided to put embedding computations and storage on the CPU in order not to fill the GPU with the
word embeddings lookup. A better distribution of resources between them can improve the speed of
our training.

Convolutional neural network As the answer is a span of the initial paragraph, we thought of a
convolutional based approach to better capture group of words and in particular patterns within the
sentence.

7 Conclusion

Although for us it seems to be an easy task, understanding a text and answering questions about it,
is very difficult. It takes much time for children to learn how to read and understand paragraphs
and questions. Moreover, the learning process for humans is driven by necessity and oriented
teaching. In comparison, the learning metric for a computer (cross entropy) and its performance
metric (F1) seems quite far. Moreover, capturing complex patterns used by author for style can be
hard to put close to easier formulation of the same idea by algorithm not trained to learn to only read.

In few training hours, we still manage to achieve promising results with F1 scores close to
60%, which is not that far from human performance. The encoders/decoders used can easily be
plugged in more complex task as one learns to ”read” and the other to ”answer”.
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