
Aiding Sentiment Evaluation with Social Network

Pengfei Gao, Fan Yang, Hao Yin ∗
Institute for Computational and Mathematical Engineering

Stanford University
Stanford, CA 94305

{pfgao, fanfyang, yinh}@stanford.edu

Abstract

One challenge for sentiment analysis as well as many other natural language pro-
cessing task is the language variation. In this project, based on the intuition of
language homophily, we aim to solve this problem by combing social network in-
formation. We propose a new model that measure the interaction between author
embedding and sentence words’ embeddings. This model is based on the current
state-of-the-art methodology that does not consider social network information.
The authors’ embeddings are pretrained with three different yet most popular net-
work node embedding methods, and their performances are compared.

1 Introduction

Sentiment analysis is one of the important tasks in natural language processing community[8] which
helps people navigate the huge amount of user-generated content available online. Machine learning
systems that make decision on the attitude of viewpoints to be positive, neutral or negative that
enable people to understand the enormous body of opinions on the internet, ranging from product
reviews to political positions.

One of the biggest challenges in sentiment analysis, as well as in almost all fields for natural lan-
guage processing research, is the language variation. Words can mean different things to different
people, and different people express their feeling and idea in a different way. However, such vari-
ation is believed to be tractable from social factors [1]. For example, people of the same ago may
speak in a similar way [12] which might be influenced from their youth education, and people from
the same community use the same language which is known as jargon. Therefore, social network
information provides additional information to solve the problem in language variable thus improve
the general prediction performance in natural language processing tasks.

Online social networks provide promising platforms to study the language variations. Most online
websites have social network behind it, and user-generated content often appears in the context of
social media. Therefore nowadays user-relationship information is now more easily obtainable. For
example, huge amount of tweets from Twitter express people’s opinions on different subjects. Each
tweet is associated with a user and users formed social network structure through the mechanisms
of “follower”. When a user forms a link in the network such as Twitter, they tend to have a personal
relationship then the principle in language called “homophily” suggests that users who are connected
via some social relationship may also share similar opinions or linguistic variation (each community
may have their own “jargon” in expressing ideas and sentiments). Figure 1 from [1] gives an example
of how users from different communities may understand the word “sick” differently.

Nowadays, models that combine social network information with machine learning classification
task are proposed in many literature. However, these models rarely utilize the state-of-art deep

∗Each member contributes equally, and names are put in alphabetic order.

1



Figure 1: Words such as sick can express opposite sentiment polarities depending on the author;
Leveraging social relations for entity disambiguation.

learning methods like convolutional neural network or network node embeddings which are common
in social network and NLP communities. Previous research either use traditional machine learning
methods to incorporate social network structure information as in [7] or they separate the textual and
user information to build separate deep learning model as in [8]. None of the previous works directly
model the interaction between author information, especially the social network information, and the
sentence context. In this paper, we are going to explore different methods that utilize jointly social
network information and textual information in sentiment analysis with one joint deep learning
model that takes both social network information and textual information as input to classify the
sentiment of sentences.

Our paper is structure as follows: section 2 will introduce related work to our task and how we relate
them; section 3 will define the problem formally and introduce our dataset; section 4 will introduce
our model and intuition; section 5 will demonstrate our numerical result; section 6 will discuss our
result and draw our conclusion.

2 Related Work

Sentiment Analysis

The current state-of-the-art method is convolutional neural networks(CNN)[9] which takes word
embeddings from sentences as inputs and output a softmax classification to identify sentence sen-
timent. The typical structure of such CNN is some convolutional layer on top of original sentence
word embeddings, then a max pooling layer on top of the convolutional layer to extract some ex-
treme information. Finally, a dense layer with fully connected network is added to transform features
from CNN to a softmax classifier. A simple CNN model with one convolutional layer of two-width
window plus one max pooling layer with single channel can achieve amazing result[1]. Different
initializations methods[11] could also be adopted to improve prediction accuracy, but they all share
the similar structure as described above.

Network Node Embeddings

The emergence of various network node embedding methods make it possible to represent each node
with a meaningful vector representation. The aim is to assign vectors such that connected nodes have
similar vector while socially distant pairs of nodes have different vectors. The idea in achieving this
vector assignment originated from the skip-gram word2vec method, which aims to maximize the
likelihood of occurrence of context words given the center of each sentence window. In various
node embedding methods, one aims to maximize the likelihood of node 1-hop neighborhood based
on the center node. With different neighborhood sampling methods and objective function, the three
current most popular efficient algorithm that easily applies to network of thousands of nodes are
the DeepWalk [2], LINE [3], and node2vec [4]. These three model have proven to obtain good
performance in many downstream prediction tasks such as multi-label classifications. In this paper,
we compare the performance of these three methods in solving the language variation problem in
sentiment analysis.

2



Aiding Classification with Social Network

The intuition behind combing social network with classification is that users connected are more
likely to hold similar opinions and use language similarly.

Tan et al. (2011) [5] is the first paper to show social relationship information can be exploited to
improve sentiment analysis. They have shown numerically that incorporating social-network in-
formation can indeed lead to statistically significant sentiment-classification improvements over the
performance of a SVM baseline model that only has access to textual features. Yang and Eisen-
stein(2016)[1] is a more recent version for combining social network information and sentiment
analysis. They study task for classifying sentiment to be positive, neutral and negative for each
tweets given text and user ID information. Their model consider the author information and sen-
tence information separately: each node (author) in the network is assigned an embedding vector
using the LINE algorithm[2], and then is (softly) assigned each cluster on the network based on the
embedding. Each cluster has its own model, which is a CNN model combined with max pool layer.
Detail model specs are described in section 4 as a comparison to our model.

On the other hand, Yang and Chang(2016)[6] study another problems called entity linking, which is
the task of identifying mentions of entities in text, and linking them to entries in a knowledge base.
They achieve the-state-of-art result with a tree-based model in Twitter data. To further improve
the performance, Yang et al.(2016)[7] propose to incorporate social network information in the
same problem. Intuitively, socially linked individuals share interests, and are therefore likely to
mention the same sorts of entities. They build a bilinear model based on the previous the-state-of-art
tree model[6] that consider interactions of users and entities. This new model incorporating social
network information has a F1 improvements of 1%-5% on benchmark datasets.

3 Data Description

Yi and Eisenstein have provided the data used in [1]. The data consists of a collection of tweets as
well as some network information on Twitter.

3.1 Corpus

The corpus contains a collection of samples (tweets). For each data sample, we have one tweet ID,
one user ID, a sentiment label (positive, neutral, negative), and the tweet content itself. For example,
the following are two examples of our data samples.

261140278944088066 17572408 negative @USER may i have an ...
237571817550786563 727519172 neutral @USER i told you shane ...

The size of the corpus is the following:

Figure 2: dataset description

3.2 Network

We have contacted Yi, one of the author of [1], to obtain the three social networks he used in the
paper, i.e., FOLLOWER, MENTION and RETWEET network. The construction of each network is
seen in [1]. Each network is an edge list of form:

3



73225701 8161232
95679562 87818409
...

On each line, the two numbers are user IDs, indicating that there is an edge (direct connection)
between the two nodes. The first and second are two user IDs which are consistent with the above
twitter data. These two user IDs indicate these two users are connected in the network.

Three social network structures were constructed in [1]. As described in the original paper:

We construct three author social networks based on the follow, mention, and retweet rela-
tions between the 7,438 authors in the training dataset, which we refer as FOLLOWER,
MENTION and RETWEET. Specifically, we use the Twitter API to crawl the friends of the
SemEval users (individuals that they follow) and the most recent 3,200 tweets in their time-
lines. The mention and retweet links are then extracted from the tweet text and metadata.
We treat all social networks as undirected graphs, where two users are socially connected
if there exists at least one social relation between them.

4 Methodology

Our task is given tweet content “i told you shane would get his ...” and user ID “72751”, we need to
classify the sentiment of this sentence to be positive, neutral or negative. Our model will start from
the state-of-the-art convolutional neural network model. Upon CNN baseline, we modify it with a
author embedding activation layer.

CNN Baseline

Sentence word embeddings are concatenated together as inputs, (h1,h2, . . . ,hn), where the maxi-
mum sentence length is usually less than n words due to character constraints of tweets. If a sentence
is less than n words, we will use zero word vectors to fill it. Therefore, our input data are consis-
tent length n. Next, a convolutional layer is performed on the sentence word embeddings with a
width-two window to d-channel filters of size n−1. Then a max pooling layer pick the largest value
among the n − 1 layers to form a d-channel features. Finally, this length d features are input into a
softmax layer to classify three-class label. To express the above model structures in mathematical
equation:

1. The convolutional layer:

ci = tanh(WLhi +WRhi+1 + b), i = 1, 2, . . . , n− 1 (1)

where hi ∈ RD×1 are word embedding, ci ∈ Rd×1 are padding i in the convolutional
layer, WL and WR are convolutional layer kernel matrices, b is the convolutional layer
bias vector.

2. The max pooling layer:
s = max

i=1,2,...,n−1
ci (2)

where s ∈ Rd×1 are features learned from CNN.

3. The softmax layer:

P(Y = c|s) = exp(Wcs+ bc)∑
c′ exp(Wc′s+ b′c)

(3)

Author Activated CNN

In our dataset, each tweet also includes a user ID. We use algorithm of LINE, DeepWalk and
Node2Vec to learn a network node embedding for each user ID to form author embeddings a for
each sentence (h1,h2, . . . ,hn). Compared to baseline CNN, we use one hidden layer to learn an
activated vector z for each user which element-wise multiplies convolutional layer. The intuition

4



Figure 3: baseline CNN network strucutre

behind this activated vector is that for each convolutional channel, different user may display dif-
ferent behaviors. This is in fact equivalent with bilinear form with low rank approximation. We
can exploit the interaction between word embeddings and author embeddings. To express the above
model structures in mathematical equation:

1. The convolutional layer:

ci = tanh(WLhi +WRhi+1 + b), i = 1, 2, . . . , n− 1 (4)

where hi ∈ RD×1 are word embedding, ci ∈ Rd×1 are padding i in the convolutional
layer, WL and WR are convolutional layer kernel matrices, b is the convolutional layer
bias vector.

2. The user activated layer:
z = tanh(Waa+ ba) (5)

where z ∈ Rd×1 are activation features learned from author embeddings a ∈ RA×1.
3. The max pooling layer with user activation:

s = max
i=1,2,...,n−1

z� ci (6)

where s ∈ Rd×1 are features learned from CNN.
4. The softmax layer:

P(Y = c|s) = exp(Wcs+ bc)∑
c′ exp(Wc′s+ b′c)

(7)

Note that the difference between node activated CNN and baseline CNN is that activated CNN has
new parameters Wa and ba. In fact, originally we would like to build bilinear form for each word
vector hiWhaa to form some interaction features for each word, hoping the interaction features
could help identify different behaviors for each user community. But we find out our data sample is
too small to learn this bilinear matrices W , therefore we have to use some low rank approximation
of W which can be equivalent to element-wise activation as described above.

5



CNN SA 1 DeepWalk LINE node2vec
Dev2013 68.85 69.52 67.71 69.51 68.58
Test2013 69.53 69.98 67.58 69.67 68.58
Test2014 72.41 72.70 71.46 71.44 71.46
Test2015 64.40 65.28 64.71 64.57 64.25

Avg test sets 68.78 69.32 67.92 68.56 68.10

Table 1: Prediction performance on each Dev and Test Sets.

5 Experiments

We implement our model in Section 4 with TensorFlow, and apply our code on the dataset described
in Section 3. To be specific, we train and tune our model on the 2013 Train and Dev dataset, and
evaluate our model on the Test 2013–2015 dataset. The focus of this section is to compare our author
activated CNN model performance with the baseline CNN model.

5.1 Experiment Setting

We employ the pretrained word embeddings by Austudillo et al. [13]. These embeddings are ob-
tained via training on a corpus of 52 million tweets using the structure skip-gram model [14], and
have been shown to perform very well on sentiment analysis tasks [1]. We also use the same evalu-
ation metric as the SemEval challenge.

We pretrain the word embedding using several existing network node embedding methods including
DeepWalk [2], LINE [3], and node2vec [4]. These methods are applied to all the FOLLOWER+,
MENTION+, and RETWEET+ networks. In addition, to provide a baseline for different node em-
bedding methods, we use purely random node vector.

Regarding baseline models, we adopt the state-of-the-art convolutional neural network model
methodology for sentiment analysis. This model is the basis model of our Author Activation CNN
Model and has been described in Section 4. As a second baseline model, we adopt the Social Atten-
tion model [1] which models the soft-assignment of users to communities.

Parameter tuning For both the baseline CNN model and author activated CNN model, we tune
all the hyper parameters on the SemEval 2013 Dev dataset, including

• number of bigram filters for the CNN models, from {16, 32, 50, 100};
• dropout rate, from {0.1, 0.2, 0.4};
• L2-penalty coefficient, from {1e-6, 1e-4, 1e-2};
• author embedding dimension, from {16, 32, 50, 100}.

Moreover, we precomputed the author embeddings on all the FOLLOWER+, MENTION+, and
RETWEET+ networks with three node embedding methods. Using different networks as well as
embedding algorithms can all be considered as hyper parameters. We also adopted early stopping
method based on Dev Performance to prevent our model from overfitting.

For the Social Attention model, we use the best hyper parameter set provided by the author [1].

5.2 Results

Table 1 summarizes the empirical result of our experiments. Both baseline CNN model and our
author activated CNN model are tuned for all parameters The best hyper parameter sets for baseline
CNN model is 100 bigram filters, 0.4 dropout rate, and 1e-2 for L2 penalty coefficient. The best

1Social Attention model [1]. Note that even after contacting the authors and obtaining their code, we still
fail to retrieve their declared result in the paper. Here we put the implemented result using their provided code.

6



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Num Training Epocs

0

10

20

30

40

50

60

70

P
re

di
ct

io
n 

P
er

fo
rm

an
ce

CNN
two-stage

Updating both convolution layer weights and author
layer weights

0 5 10 15 20
Num Training Epocs

0

10

20

30

40

50

60

70

P
re

di
ct

io
n 

P
er

fo
rm

an
ce

CNN
two-stage

Fix convolution layer and only train author layer
weights

Figure 4: Performance of two-stage training method.

hyper parameter sets for the author activated CNN model is 100 bigram filters, 100 author embed-
ding dimension, and from RETWEET+ network. The best dropout rate and L2 penalty coefficient
depends on which node embedding method we use. From the table, we see that the improvement
after adding the node embedding is insignificant. The author-activated CNN model sometimes do
even worse in terms of test sets prediction. Different node embedding scheme does not seems to
have big impact on the downstream prediction task.

5.3 A two-stage training method

We believe the reason for unsatisfying result is that author informations are considered too early in
our training process. We combine author information to solve the problem of language variation.
However, immediately after we randomly initialize the weights in baseline CNN model, language
variation can not be seen, i.e., we are not more likely to make wrong prediction to twitter between
a pair of friends. At this time, most gains are achieve by training the sentence interpretation part
(encoded by baseline CNN model) rather than solving language variation. Therefore, the update
on author embedding weights are almost purely random thus will harm our model in the long run.
The language variation is better heard after the sentence interpretation part is mature. In the training
process, this is the time when the baseline CNN model start to overfit.

Therefore, we propose a two-stage training method. In the first stage, we fix the weights related with
author embedding, and only train the weights existing in the baseline CNN model. After several
epochs of training, the improvement of development set prediction performance starts to fluctuate
(See Figure 4), we interpret this an a sign of baseline CNN model overfitting, and it is only at this
stage, the second stage, that we start to train the layer related with author embedding.

Table 4 demonstrates the performance of two-stage training method. We consider two variations.
First, in the second stage we update the weight matrices in both sentence convolution layer and
author embedding processing layer. Second, in the second stage, we fix the sentence convolution
layer and only update the author embedding layer. Unfortunately, in both variation, the improvement
in prediction performance from adding author embedding information is not significant. In the first
variation (left plot of Figure 4) the prediction performance still fluctuate just like the CNN training
method; in the second variation, there seems to be no improvement.

6 Discussion and Conclusion

Our experiment results are not cheerful, and we believe it is due to the following two reasons.
First, our sample size is too small, which makes the training suffer from overfitting. Even if we
have employed different overfitting prevention techniques including L2 penalty on weights, dropout,
and early stop, considering that we only have 8,000 training tweet samples it is not likely to build
insightful models. We believe a larger training set would help solving this issue of overfitting.

7



Second, the experiment results show that the twitter networks are not informative in terms of lan-
guage variation. One follow another person does not mean that these two people are friends and
should have similar language usage preference. We believe a better network would be Facebook
friendship network.

The experiment by Yang and Esteintin(2016)[1] is not persuasive either. We believe their model
improvement is due to ensemble effect. In fact, in our running of their code, their baseline models
outperform their social attention model.

Despite the unsatisfying result, we still believe social network information may help solving the
issue of language variation and thus improve the general performance of sentiment analysis and other
natural language tasks. Even though this user-activation method does not help the CNN baseline
model, other ways of introduction may help, and may also help the prediction of other NLP models
such as RNN and LSTM.

Reference

[1] Yang, Yi, and Jacob Eisenstein. “Overcoming Language Variation in Sentiment Analysis with Social At-
tention.” arXiv preprint arXiv:1511.06052 (2016).

[2] Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of social representations.”
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2014.

[3] Tang, Jian, et al. “Line: Large-scale information network embedding.” Proceedings of the 24th International
Conference on World Wide Web. ACM, 2015.

[4] Grover, Aditya, and Jure Leskovec. “node2vec: Scalable feature learning for networks.” Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[5] Tan, Chenhao, et al. “User-level sentiment analysis incorporating social networks.” Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2011.

[6] Yang, Yi, and Ming-Wei Chang. “S-mart: Novel tree-based structured learning algorithms applied to tweet
entity linking.” arXiv preprint arXiv:1609.08075 (2016).

[7] Yang, Yi, Ming-Wei Chang, and Jacob Eisenstein. “Toward socially-infused information extraction: Em-
bedding authors, mentions, and entities.” arXiv preprint arXiv:1609.08084 (2016).

[8] Pang, Bo, and Lillian Lee. “Opinion mining and sentiment analysis.” Foundations and Trends in Information
Retrieval 2.12 (2008): 1-135.

[9] Kim, Yoon. ”Convolutional neural networks for sentence classification.” arXiv preprint arXiv:1408.5882
(2014).

[10] Dos Santos, Ccero Nogueira, and Maira Gatti. “Deep Convolutional Neural Networks for Sentiment
Analysis of Short Texts.” COLING. 2014.

[11] Severyn, Aliaksei, and Alessandro Moschitti. “Twitter sentiment analysis with deep convolutional neural
networks.” Proceedings of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 2015.

[12] Rosenthal, Sara, and Kathleen McKeown. “Age prediction in blogs: A study of style, content, and online
behavior in pre-and post-social media generations.” Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational
Linguistics, 2011.

[13] Astudillo, Ramn Fernandez, et al. “Learning Word Representations from Scarce and Noisy Data with
Embedding Subspaces.” ACL (1). 2015.

[14] Ling, Wang, et al. “Two/Too Simple Adaptations of Word2Vec for Syntax Problems.” HLT-NAACL. 2015.
APA

8


	Introduction
	Related Work
	Data Description
	Corpus
	Network

	Methodology
	Experiments
	Experiment Setting
	Results
	A two-stage training method

	Discussion and Conclusion

