
Question Answering on SQuAD

Chenjie Yang
Department of Computer Science

Stanford University
yangcj@stanford.edu

Haque Ishfaq
Department of Statistics

Stanford University
hmishfaq@stanford.edu

Abstract

In this project, we exploit several deep learning architectures in Question An-
swering field, based on the newly released Stanford Question Answering dataset
(SQuAD)[7]. We introduce a multi-stage process that encodes context paragraphs
at different levels of granularity, uses co-attention mechanism to fuse represen-
tations of questions and context paragraphs, and finally decodes the co-attention
vectors to get the answers. Our best model gets 62.23% F1 score and 48.72% EM
score on the test set.

1 Introduction

Question Answering (QA) has become a popular field in natural language processing over the past
few years. The limited size of previous QA datasets ([8] etc.) prevents the researchers from training
data-intensive models like deep neural networks.

The recently released Stanford Question Answering dataset (SQuAD)[7] addresses the weakness of
the previous datasets. It is orders of magnitude larger than all previous hand-annotated datasets, and
is challenging: all the answers can be arbitrary spans within context paragraphs rather than a limited
set of multiple choices.

The SQuAD dataset gives us a chance to develop more expressive and realistic models. These mod-
els typically consist of three parts: encoding layer, attention layer and decoding layer. One of the key
progress in this area has been the use of attention mechanism[14][9], which extracts the most rele-
vant part within a context paragraph to answer the question. Other works that attempt to empower
the encoding or decoding process have also been published. For example, match-LSTM[13] model
explicitly aggregates the matching of the attention-weighted premise to each token of the hypothesis
when encoding textual information. RASOR[4] efficiently builds fixed length representations of all
spans in the context paragraph with a recurrent network and produce answers based on scores of
these spans.

In this project, we explore several neural network architectures for the SQuAD task. We begin at a
baseline model that has basic encoding, attention and decoding layer. Then we try to add advanced
components to each layer to boost the performance step by step. Our best model gets 62.23% F1
score and 48.72% EM score on the test set.

The rest of this paper is structured as follows: section 2 briefly describes the SQuAD dataset, section
3 discusses the architecture of our model in details, section 4 talks about the experiment settings and
some special considerations in choosing hyper-parameters, section 5 shows the experiment results
and result analysis.

1



2 Dataset

SQuAD is a new reading comprehension dataset, consisting of 100000+ question-answer pairs on
500+ articles. The answer to each question is always a span in the context paragraph. The model is
trained to produce answers that can match one of the human written answers. SQuAD is significantly
larger than previous reading comprehension datasets, and is also much more challenging because
the answers do not come from a small set of candidate answers and they have variable lengths. The
public dataset has two parts: 81386 question-answer pairs for training, and 4284 question-answer
pairs for validation. Also, the SQuAD website contains a leaderboard for researchers to evaluate
their models on a hidden development set and a hidden test set.

3 Architecture

In this section, we introduce our end-to-end neural architecture for question answering in details. An
overview of our model can be seen in Figure 1. Basically, the model includes three parts: encoding
layer, attention layer and decoding layer.

Figure 1: Architecture Overview

3.1 Encoding Layer

Word Embedding Layer maps each word to a d-dimensional vector space using a pretrained word
embedding model. Here we use GloVe [6] to initialize the model. Words not found in Glove will be
mapped to random vectors. The word embeddings are not updated during training.

Convolution Layer applies convolution filters[2] with different filter widths on the contexts to cap-
ture coarse grain semantics, and possibly phrase representations.

2



Contextual Embedding Layer feeds embeddings of questions, contexts, convolutionized contexts
to a shared Bi-LSTM to encode the sequence or temporal information of these sentences. To enable
conditional encoding of context paragraphs (same paragraph will be encoded differently if attached
to different questions), we use the final states of the question encoding as the initial states of con-
text/convolutionized context encoding.

3.2 Attention Layer

We use the co-attention mechanism proposed in [14] that attends to the questions and contexts
simultaneously. Let Q = {q1, q2, · · · , qm} ∈ Rn×2h denote the encoding matrix of questions, where
h is the hidden size of cells in the encoding Bi-LSTM. C = {c1, c2, · · · , cm} ∈ Rm×2h denote the
encoding matrix of contexts. Then the affinity scores corresponding to all pairs of question words
and context words are: L = CQT ∈ Rm×n. Then we use softmax to normalize it.

AC = softmax(L) ∈ Rm×n, AQ = softmax(LT ) ∈ Rn×m (1)

Next we compute the summaries of the context in light of each word in the question, and similarly
compute the summaries of the question in light of each word in the context.

CQ = AQC ∈ Rn×2h, QC = ACQ ∈ Rm×2h (2)

Then we map the question encoding back into space of context embedding, and concatenate it with
QC to get a co-attention vector.

Co = [QC ;ACCQ] ∈ Rm×4h (3)

Now we have Co, a co-dependent representation that encodes both context-to-question attention
information and question-to-context attention information. We concatenate it with the encoding
matrix of contexts C ∈ Rm×2h and the encoding matrix of convolutionized contexts CC ∈ Rm×2h

to form the final co-attention vector Att = [Co, C, Cc] ∈ Rm×8h. Finally, we feed the co-attention
vector Att to another Bi-LSTM for the fusion of temporal information. The output of this Bi-LSTM
will be fed into the decoder layer to predict answers.

This attention mechanism is simple but powerful. We also explored other promising attention mech-
anisms like match LSTM in [13], and bi-directional attention flow in [9]. However, after we imple-
mented them, we found that: match LSTM was slow to train; bi-directional attention flow would
consume a lot of memory for calculating the attention vector and tend to cause out of memory error
even if we use small batch size (bi-directional attention method needs to calculate a matrix whose
dimension is batch size× question length× context length× hidden size, which is huge). So
finally we chose to use the simple co-attention mechanism described above.

3.3 Decoder Layer

Since in SQuAD dataset, the answer to each question is always a span in the context paragraph. A
natural way for producing answer span is by predicting the start and end points of the span [12].
This is referred to as a boundary model. Another kind of model is the sequence model, where the
answer is represented by a sequence of integers indicating the positions of the selected words in the
context paragraph. Here we decide to choose boundary model since: 1.Several previous works (like
[13]) have shown that the performance of the boundary model is comparable to the sequence model
(even better in most cases). 2.Decoder using a boundary model is typically much smaller than that
using a sequence model, which means the training process could be faster.

At first we only used a baseline decoder: we feed the co-attention vector Att into a fully-connected
layer followed by a non-linear relu layer to further extract features. The features will then be put
into the softmax layer to predict the answers.

After getting baseline results, we tried to use more advanced models. Motivated by [11] and [13],
we implemented the Answer Pointer layer as our decoder. However, the performance was not good.

Then we replaced the fully-connected layers in decoder with highway network layers[10], since
highway network layers allow unimpeded information to flow across and maintain gradients of pa-
rameters. Also, when predicting end points, we add another Bi-LSTM layer to further extract the
temporal information of co-attention vector. We observed a performance boost after using this de-
coder.

3



3.4 Predicting answers

The model predicts the start and end points of answers separately. It’s possible that the predicted end
index of answer is larger the predicted start index. To avoid this and to make the predicting process
more robust, we incorporate a search mechanism when producing answers: the answer span (k, l)
where k ≤ l with the maximum value of p1kp

2
l is chosen. This can be solved in linear time with

dynamic programming.

4 Experiments

4.1 Data Preprocessing

We first tokenize all the passages, questions and answers using NLTK. Then we use word embed-
dings from GloVe[6] to map words into embedding vectors. To decrease the out of vocabulary
(OOV) error, we use the Common Crawl 840B 300d GloVe vectors. Words not found in GloVe
are initialized randomly. The word embeddings are not not trained during training. Since the GPU
memory in Azure is limited, and some very long questions/contexts will cause OOM (out of mem-
ory) error if we use complex models, we limit the max question length to be 40 and the max context
length to be 500. Longer question/context are truncated. Among 81386 training pairs, only 2 ques-
tions and 25 context paragraphs need to be truncated.

4.2 Model Details

For the best model we have (as shown in Figure1): The hidden state size h of all Bi-LSTM models
is 256. The convolution layer uses 2,3,4,5 filter widths, each with 75 filters. We use the Adam[3]
optimizer, with a mini-batch size of 50 and an initial learning rate of 0.002. The learning rate has a
decay rate of 0.5 every epoch.

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Answer Length

colour

EM

F1

Figure 2: Variations of CCHNS performance on ground truth answer length (up to 15).

In practice, we found that our model starts to overfit quickly after 2-3 epoches. We applied dropout to
all LSTM layers and highway network layers to prevent overfitting. However, we found that it’s hard
to fine-tune the dropout rate. A higher dropout rate will seriously impact the model’s performance.

4



Table 1: Model Performance
Models Val F1 Val EM Dev F1 Dev EM

Baseline2 36.41% 23.6% / /
Co-attention 62.16% 45.6% 55.84% 43.55%
Co-attention+conv 65.38% 46.4% 59.59% 46.09%
Co-attention+conv+pointer 61.05% 44.1% / /
Co-attention+conv+highway 66.73% 47.6% 61.17% 46.95%
Co-attention+conv+highway+search 68.63% 49.6% 61.72% 47.92%

(62.23% test) (48.72% test)

Finally, we chose to use a dropout rate of 0.1. Also, we apply an early stopping mechanism: the
model will stop training if the overall validation loss starts to increase.

5 Results

5.1 Performance

We explored several models, as described in 3. Table1 shows the performance of these models. We
submitted the best model to the test set leaderboard and it achieves 62.23% F1 and 48.72% EM
scores. Our best model was combination of encoder using co-attention and decoder using convo-
lutional neural network, highway network and search mechanism. For brevity, we denote our best
model as CCHNS (Co-attention and Convolutional Highway Network with Search).

5.2 Error Analysis

To better understand our best system CCHNS, we performed various qualitative analysis for our best
model.

0.2

0.4

0.6

H
ow

W
ha

t

W
he

n

W
he

re

W
hi

ch

W
ho

W
ho

se

W
hy

W
ith

colour

EM

F1

Figure 3: Performance comparisons for different question head word.

5



Performance across length To understand the system’s performance while predicting answers of
different lengths, we show the F1 scores and the exact match (EM) for answers up to 15 tokens in
Figure 2. As in the case for most NLP applications such as neural machine translation [5], we expect
the model performance to worsen as the answer length increases. However, from Figure 2, we see
that there is no notable degradation in F1 score for answers of up to length 12. But after that we
see a consistent fall in accuracy for both EM. This is intuitively expected since it becomes more
challenging to compute the correct answer span as the number of words increases. From the graph,
we see that as the lengths of the answers increases, both EM and F1 scores drops. We also observe
that the accuracy for EM and F1 drop in different speed and the gap between F1 and EM widens as
the answer length increases.

Performance across question head We also examine our model’s performance across common
question head words. In Figure 3, we note that the F1 score for questions starting with common
question words such as ”how”,”what”, ”when” etc are pretty high. But we also observe that our
model performs realy poorly for questions starting with words ”why” and ”with”. Also we see a
dramatic difference between F1 and EM for ”why” questions. This indicates that for this type of
questions, it is easier to locate the core of the answer but it is much harder to identify the exact
span of the answer. It is interesting to note that other published state-of-the-art models such as [14],
[9], [15] also perform poorly on questions starting with ”why” indicating the inherent difficulty in
achieving high accuracy for this question type.

0.0

0.2

0.4

0.6

0.8

A
bo

ut

A
cc

or
di

ng

A
lo

ng

A
lth

ou
gh

A
pp

ro
xi

m
at

el
y

A
si

de B
y

F
or

O
th

er

U
nd

er

colour

EM

F1

Figure 4: Performance comparisons for non-interrogative question starts.

Performance across questions with non-interrogative head While it is common for existing liter-
ature to analyze performance across questions starting with different interrogative words, we could
not find any literature that examined the performance of their system for questions starting with
non-interrogative word. These questions are usually known as non-interrogative questions [1] and
they are usually more complex and rhetorical in nature. We analyzed our model’s performance for
such questions and show result for several of them in Figure 4. Even though our model performance
varies widely across different start words here, we can still observe some interesting phenomena.
For example, from Figure 4, we see that our model performs really well for questions starting with
”about” and ”approximately”. Our most interesting observation is the dramatic difference between
F1 score and EM for questions starting with ”although”. From our day-to-day usage in English,
we can easily imagine that questions starting with ”although” will be structurally complex sentence.

6



From our model’s performance on this type of question, we see that it is exceedingly difficult to get
the exact answer in this case, but our model does a really good job in getting the gist of the answer.
We envision that future works focusing on improving performance for non-interrogative questions
will lead to systems capable of understanding intricate meaning of natural language.

6 Future Work

In the future, we will try to find mechanisms to handle answers with long spans, and handle answers
start with non-interrogative heads.

7 Acknowledgments

We sincerely thank the instructors and TAs of the CS224n course to help us learn NLP and make
progress in this project! We also thank Microsoft Azure for providing access to their GPU system.

References
[1] Peter Bull. On identifying questions, replies, and non-replies in political interviews. Journal

of language and social psychology, 13(2):115–131, 1994.
[2] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint

arXiv:1408.5882, 2014.
[3] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.
[4] Kenton Lee, Tom Kwiatkowski, Ankur Parikh, and Dipanjan Das. Learning recurrent span

representations for extractive question answering. arXiv preprint arXiv:1611.01436, 2016.
[5] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to

attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.
[6] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for

word representation. In EMNLP, volume 14, pages 1532–1543, 2014.
[7] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ ques-

tions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.
[8] Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A challenge dataset

for the open-domain machine comprehension of text. In EMNLP, volume 3, page 4, 2013.
[9] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional at-

tention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.
[10] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv

preprint arXiv:1505.00387, 2015.
[11] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural

Information Processing Systems, pages 2692–2700, 2015.
[12] Shuohang Wang and Jing Jiang. Learning natural language inference with lstm. arXiv preprint

arXiv:1512.08849, 2015.
[13] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer.

arXiv preprint arXiv:1608.07905, 2016.
[14] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for ques-

tion answering. arXiv preprint arXiv:1611.01604, 2016.
[15] Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang, and Bowen Zhou. End-to-end answer

chunk extraction and ranking for reading comprehension. arXiv preprint arXiv:1610.09996,
2016.

7


	Introduction
	Dataset
	Architecture
	Encoding Layer
	Attention Layer
	Decoder Layer
	Predicting answers

	Experiments
	Data Preprocessing
	Model Details

	Results
	Performance
	Error Analysis

	Future Work
	Acknowledgments

