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Abstract

In this paper, we explore methods of determining semantic equivalence between
pairs of questions using a dataset released by Quora. Our deep learning approach
to this problem uses a Siamese GRU neural network to encode each sentence,
and we experiment with a variety of distance measures to predict equivalence
based on the sentence vector outputs of the neural network. We find that while
logistic regression on the pure distance measures produces decent results, feeding
a concatenation of different transformations of the output sentence vectors through
another set of neural network layers yields significantly improves performance to
a level comparable to current state-of-the-art models. In addition, we demonstrate
data augmentation techniques that can be used to improve Siamese neural network
model performance.

1 Introduction

Detecting semantic similarity and equivalence in sentences has many applications in natural lan-
guage understanding, ranging from paraphrase identification to evaluating machine translation [7].
In this project, we focus on detecting semantically equivalent (duplicate) questions, a prevalent prob-
lem in online Q&A forums like Stack Overflow and Quora, for which combining the answers for
duplicate questions asked by their users improves the efficiency and the quality of their service. We
use the definition of semantic equivalence employed by Bogdonova et al. [1]:

Def. Two questions are semantically equivalent if they can be answered by the exact same answers.

Recent developments in deep learning methods have made significant gains in tasks like seman-
tic equivalence detection, surpassing traditional machine learning techniques that use hand-picked
features. We build on this existing work by exploring different configurations of deep neural net-
works to identify duplicate pairs of questions. We perform numerous experiments using Quora’s
“Question Pairs” dataset,1 which consists of 404,351 pairs of questions labeled as ‘duplicates’ or
‘not duplicates’. We assume that questions marked as duplicates in the Quora dataset are seman-
tically equivalent since Quora’s duplicate question policy2 concurs with our definition of semantic
equivalence above.

1https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
2https://www.quora.com/Whats-Quoras-policy-on-merging-questions
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Figure 1: Sample of the Quora “Question Pairs” dataset
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Figure 2: General architecture of Siamese neural network: x1 and x2 represent the inputs, h1 and
h2 represent the hidden states, and ŷ is the predicted similarity.

2 Related Works

Detecting semantically equivalent sentences or questions has been a long-standing problem in natu-
ral language processing and understanding. As Dey et al. [5] demonstrate, traditional machine learn-
ing algorithms such as Support Vector Machines (SVMs) using hand-picked features and extensively
preprocessed data perform well on the SemEval-2015 dataset. They argue that the performance of
deep learning methods is heavily limited by the small, noisy datasets that they are trained on.

Nonetheless, deep learning techniques have made considerable progress in recent years. Most deep
learning methods for detecting semantic equivalence rely on a “Siamese” neural network architec-
ture [3] that takes to two input sentences and encodes them individually using the same neural net-
work. The resulting two output vectors are then compared using some distance metric, as shown in
Figure 2. This approach is used successfully by both Bogdanova et al. [1] and Sanborn-Skryzalin [7].
Bogdanova et al. found that pairing a convolutional neural network (CNN) with a cosine-similarity
distance measure was more effective than traditional methods of using Jaccard similarity or SVMs
in identifying duplicate questions in a StackExchange dataset. Sanborn and Skryzalin [7] compared
the use of recurrent neural networks (RNNs) and recursive neural networks with traditional machine
learning methods and found that recurrent neural networks performed the best on the SemEval-2015
dataset.

To date, the only published results on the Quora dataset come from Wang et al. [8]. Observing
that the encoding procedure in Siamese networks does not provide any interaction between the two
input sequences, they instead propose a bilateral multi-perspective matching LSTM model. Their
“matching aggregation” approach performs better than the Siamese CNNs and LSTMs that they
tested. We, however, will be focusing on optimizing the use of Siamese neural network methods in
this project for the task.
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3 Approach

3.1 Data Preprocessing

As shown in Figure 1, the Quora dataset provides a completely labeled dataset of pairs of questions.
In the preprocessing step, we first tokenize the sentences in the entire dataset using the Stanford To-
kenizer3 included in version 3.7.0 of the Stanford CoreNLP Suite. We chose this tokenizer because
it is the same tokenizer used for GloVe word embeddings. All characters are converted to lowercase,
and we disabled the ptb3Escaping option. We then replaced each token with its corresponding
ID in the GloVe vocabulary. For those tokens not represented in the GloVe vectors (< 0.9% of the
Quora dataset’s tokens), we assigned the specified ‘UNK’ ID.

The input questions vary significantly in length, from empty (0-length) up to 237 words. In order to
batch our computations during training and evaluation using matrix operations, we needed the input
questions to all have a fixed length. To do so, we padded the shorter sentences at the beginning with
a designated zero-padding ID and truncated the longer sentences to the same standardized length,
which is a hyperparameter to our model.

Lastly, we split our data into training, development (validation), and test sets. In order to produce
results that can be compared to those from Wang et al. [8], we use their same test set.4 For evaluating
our models and tuning their hyperparameters, we randomly split the remaining non-test data into a
training set and a development set, containing 85% and 15% of the question pairs, respectively.

3.2 Sentence Encoding

In this project, we explore two types of neural networks to encode each sentence: the recurrent
neural network (RNN) and the gated recurrent unit (GRU). During training, we update the word
embeddings as well as the weights and biases within the RNN/GRU cells. Each of these cells
contains a single layer with the tanh activation function. The weights and the biases in the encoding
layer are shared for both questions in the pair so that the network is smaller and easier to train.
Each of these neural networks outputs a sentence vector of dimension H , the hidden state size in the
RNN/GRU cells.

We initialize the word embeddings to the 300-dimensional GloVe vectors pre-trained by Pennington
et al. [6] on the Wikipedia 2014 and Gigaword 5 datasets. The weights for the cells are initialized
using Xavier initialization while the biases are zero-initialized.

3.3 Distance Measure

Once the questions of each pair are individually encoded into sentence vectors, we need to combine
them in some way to predict whether or not the pair is a duplicate. The first method we use involves
calculating some distance between the sentence vectors and running logistic regression to make the
prediction,

ŷ = σ(a · d(h1,h2) + b), (1)
where σ is the logistic or sigmoid function, a, b ∈ R are learned parameters, and d : RH×RH → R
is a distance function between the two sentence vectors.

Inspired by previous work from Bogdanova et al. [1], we initially tried cosine distance. We also
tested Euclidean (L2) distance and weighted Manhattan distance.

dcos(h1,h2) =
h1 · h2

||h1|| ||h2||
(2)

deuc(h1,h2) = ||h1 − h2|| (3)
dw−man(h1,h2) = w · |h1 − h2| (4)

where · is the dot-product, || · || is the L2 norm operator, andw ∈ RH is a learned vector of weights.

However, even though we can test multiple distance measures, we do not know what a “natural”
distance measure is in the sentence vector space encoded by the neural network. To address this

3https://nlp.stanford.edu/software/tokenizer.html
4Available at https://zhiguowang.github.io.

3



Table 1: Effect of regularization constant on accuracy and F1 score on the validation set for the
model using GRU with 2-layer similarity network.

Regularization Constant λ Acc. (Val) F1 (Val)

0.01 0.8627 0.8105
0.001 0.8623 0.8081

0.0001 0.8631 0.8103

problem, we replaced the distance function with a neural network outputting a softmax over the
two possible classes, leaving it up to this neural network to learn the correct distance function. We
experimented using one layer and two layers in the neural network. In the 1-layer network, the
prediction is

ŷ = softmax(ReLU(v)U + b) (5)
where U ∈ R4H×2 and b ∈ R2 are the learned weights and bias, and the input v to this neural
network is a row concatenated vector:

v = [h1 h2 (h1 − h2)
2 h1 � h2]. (6)

We adapted this concatenated vector idea from a similar method used by Bowman-Gauthier [2] in
their paper on sentence parsing. However, we realized that their concatenated vector used h1 − h2,
which is not symmetric between h1 and h2, so we compared the results with using the squared
difference (h1 − h2)2. We found that the squared difference improved the model, so we replace
h1 − h2 with (h1 − h2)2 in our vector.

In the 2-layer network, we used the same concatenated vector v and feed it through an additional
hidden state v1 with dimension H .

v1 = ReLU(ReLU(v)U1 + b1) (7)
ŷ = softmax(v1U2 + b2) (8)

3.4 Loss

For the distance-logistic regression method, we use the mean-squared error as our loss function.
For the two-layer neural network softmax method, we use cross-entropy loss. To avoid overfitting,
we use L2 regularization for all our weights and biases and found that a regularization constant of
λ = 0.0001 achieved the highest accuracy on our validation set (Table 3.4). For the distance-logistic
regression method, the total loss is

Lossdist =
1

N
||ŷ − y||2 + λ||θ||2, (9)

and for the softmax method, we have the total loss of
Losssoft = CE(ŷ,y) + λ||θ||2 (10)

where CE denotes the cross-entropy loss function. The vectors ŷ ∈ (0, 1)N and y ∈ {0, 1}N are
the predictions and ground truth labels for all N training examples, and θ is a 1-dimensional vector
containing all of the weights and biases used in the model. To optimize the loss, we use the Adam
optimizer and backpropagation algorithm provided by Google’s TensorFlow library.

4 Experiments

4.1 Model Types

As mentioned in Section 3, we experimented using RNNs and GRUs with different distance metrics
to make our model. Table 2 shows the accuracy and the F1 scores (on the validation set) of the
different model types we tested.

Since the outputs ŷ of our models are real numbers between 0 and 1, we round to the nearest integer
to make a final prediction before computing accuracy and F1 scores. We define accuracy as

Acc =
Number of correct predictions

Number of data examples
(11)

4



Table 2: Comparison of the best accuracy and corresponding F1 score of the models we experi-
mented with on the validation set.

Model Acc. (Val) F1 (Val)

RNN, cosine distance 0.7737 0.7007
RNN, L2 distance 0.7860 0.7077
RNN, weighted Manhattan distance 0.7991 0.7160
RNN, 1-layer similarity network 0.8061 0.7320
RNN, 2-layer similarity network 0.8094 0.7220

GRU, cosine distance 0.7708 0.7170
GRU, L2 distance 0.8309 0.7735
GRU, weighted Manhattan distance 0.8422 0.7845
GRU, 1-layer similarity network 0.8633 0.8132
GRU, 2-layer similarity network 0.8631 0.8103

GRU, 1-layer similarity network, augmented data 0.8668 0.8191
GRU, 2-layer similarity network, augmented data 0.8680 0.8173

We found that our best model is the GRU that uses a 2-layer similarity network to predict duplicity
from the hidden states. We can also see that among the distance methods, the weighted Manhattan
distance performed the best, followed by L2 distance and cosine distance. This shows that the way
the algorithm separates sentences in the sentence vector space is not simply by cosine distance or
Euclidean distance.

4.2 Spellcheck Preprocessing

Upon noticing that there were misspelled words in some of the questions in the dataset, we tried us-
ing a spell-check on the data during preprocessing to improve our results. We used the autocorrect
Python package to correct the spelling of words longer than 3 letters to their closest correct spelling.
However, this actually decreased performance compared to the uncorrected data. We believe there
are two explanations for this. First, since the GloVe vectors were trained on unsanitized datasets
including Wikipedia, the GloVe vocabulary already includes many common spelling mistakes, such
as the the misspelled contraction “theyre.” As a result, over 99.1% of the words in the Quora dataset
are found in the GloVe vocabulary, so the room for improvement from additional spell-checking is
limited. In addition, some words not in the GloVe vocabulary that would have been marked “UNK”
were incorrectly changed by the spellcheck mechanism to real words that had no relation to the
original word.

4.3 Data Augmentation

We noticed that our training accuracy and F1 scores were exceeding 99% and 0.99, respectively,
far greater than the results on the validation set. However, these numbers changed very little as
we varied the regularization constant λ (Table 3.4). Thus, we looked toward data augmentation as
another approach to reduce overfitting.

To create artificial negative examples (non-duplicate pairs) to the existing dataset, we assumed that
two questions randomly chosen from two different rows in the dataset are non-duplicate questions.
To create more relevant artificial samples, we only chose new pairs of questions with a Jaccard
similarity greater than 0.1.

We also added an equal number of artificial positive samples (duplicate pairs) to offset the increase
in negative examples. We accomplished this in two ways. 50% of the new duplicate pairs come from
pairing random questions to themselves. The other 50% comes from reversing the order of existing
duplicate pairs. Note that reversing the random order of existing duplicate pairs would typically be
less useful in a traditional Siamese network which is fully symmetric. However, our concatenated
vector v is not completely symmetric, which enables this data augmentation technique to work well.

In total, we doubled the size of our training set, split evenly between duplicate and non-duplicate
pairs. This resulted in an increase in accuracy of approximately 0.5% on the validation set for our
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Figure 3: Graph of standardized sentence length vs. accuracy (blue) and F1 (red) for model using
GRU with 2-layer similarity network

Figure 4: Graph of hidden layer size vs. accuracy (blue) and F1 (red) for model using GRU with
2-layer similarity network

best model, the GRU using a 2-layer similarity network. With this experiment, we showed that
these data augmentation techniques can be a valid and valuable way to improve Siamese models
in general. Given more time to fine-tune this technique, we believe that data augmentation has
tremendous potential in improving the results even more.

4.4 Hyperparameter Search

To optimize our model’s performance, we conducted a search over its hyperparameter space. In
particular, we focused on tuning the size of the neural network hidden layer and the standardized
length of our input sentences.

During the tuning of the standardized sentence length hyperparameter, we found that increasing the
standardized length generally led to an increase in accuracy and F1 scores, as more information
could be incorporated from longer questions, while shorter questions did not suffer from additional
padding. However, our accuracy scores began to plateau at a standardized length of 30. This makes
sense since only 1% of the questions in the dataset have over 30 words. A table and graph of
our results from tuning the standardized length of our input sentences can be found in Figure 3
respectively.

Similar to the standardized sentence length parameter, we found that increasing the size of our
hidden layer sentence representation generally led to an increase in model performance, as shown
in Figure 4. While a hidden layer size of 300 showed slightly better accuracy, we settled on 250 as
a good balance between accuracy and training time.
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Table 3: Comparison of Tuned Models on Test Set

Model Acc. (Test) F1 (Test)

GRU, weighted Manhattan distance 0.8235 0.8161
GRU, 1-layer similarity network 0.8447 0.8391
GRU, 2-layer similarity network 0.8431 0.8356
GRU, 1-layer similarity network, augmented data 0.8524 0.8474
GRU, 2-layer similarity network, augmented data 0.8495 0.8418

BiMPM* 0.8817 –

4.5 Results and Discussion

After tuning the hyperparameters (standardized length and hidden layer size) on the validation set,
we ran our models on the test sets. The results are shown in Table 3, where we include Wang et al.’s
BiMPM model for comparison.

Our best model, the Siamese GRU using a 2-layer similarity network trained on the augmented
dataset, achieved 85.0% accuracy on the test set split, comparable to the 88.17% accuracy reported
by Wang et al. [8]. It is likely that the ”matching aggregation” framework used by Wang et al.
allowed them to capture more semantic information from the input sentences by using interactions
between them as they were encoded. However, our addition of the vector of concatenated hidden
state transformations fed through additional neural network layers and use of data augmentation
allowed us to perform much better than their implementation of a Siamese LSTM neural network
model (79.6% accuracy).

5 Conclusion

Our results build on previous research on using Siamese networks for identifying semantically equiv-
alent questions. In particular, we provide three novel contributions.

First, passing the concatenated vector v of hidden state transformations through a neural network
is much better at determining semantic equivalence than pure distance measures. Previous work by
Bowman et al. [2] only used cosine distance, which we show is the least promising distance measure.

Second, a GRU neural network is able to extract the majority of the semantic meaning from a
sentence from the first 10 to 15 words. This result is somewhat surprising given Dey et al.’s [5]
claim that deep neural networks are unsuitable for learning semantic meaning on short-text content.

Lastly, we demonstrate that data augmentation can be more effective than L2 regularization for
reducing overfitting, especially in asymmetric Siamese neural nets where there are natural data aug-
mentation techniques. While we did not have enough time to perfect this technique, we believe it
holds significant potential.

For future work, we see several possible extensions of our model. Firstly, other researchers have
demonstrated that weighting the word embeddings by their TF-IDF scores can improve performance
on semantic textual similarity tasks [4]. The basic idea is to give rare words greater weight. In
addition there is room for improvement by using “matching aggregation” techniques, as proposed
by Wang et al. [8], that allow interactions between the input sentences as they are encoded through
the neural networks.
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